

Midwest Pooled Fund Research Program Fiscal Year 2018 (Year 28) Research Project Number TPF-5(193) Supplement #119 NDOT Sponsoring Agency Code RPFP-18-CONC-1

DEVELOPMENT OF A PCB STEEL COVER

PLATE FOR LARGE OPEN JOINTS – PHASE II

Submitted by

Ryan F. Bickhaus, B.S. Graduate Research Assistant Robert W. Bielenberg, M.S.M.E. Research Engineer

Scott K. Rosenbaugh, M.S.C.E. Research Engineer Ronald K. Faller, Ph.D., P.E. Research Professor & MwRSF Director

Sagheer A. Ranjha, Ph.D. Former Post-Doctoral Research Associate

MIDWEST ROADSIDE SAFETY FACILITY

Nebraska Transportation Center University of Nebraska-Lincoln

Main Office

Prem S. Paul Research Center at Whittier School Room 130, 2200 Vine Street Lincoln, Nebraska 68583-0853 (402) 472-0965 **Outdoor Test Site** 4630 N.W. 36th Street Lincoln, Nebraska 68524

Submitted to

MIDWEST POOLED FUND PROGRAM

Nebraska Department of Transportation 1500 Nebraska Highway 2 Lincoln, Nebraska 68502

MwRSF Research Report No. TRP-03-387b-20

December 17, 2020

TECHNICAL REPORT DOCUMENTATION PAGE

1. Report No. TRP-03-387b-20	2. Government A	ccession No.	3. Recipient's Catalog No.
4. Title and Subtitle Development of a PCB Steel Cov	5. Report Date December 17, 2020		
	6. Performing Organization Code		
7. Author(s) Bickhaus, R.F., Bielenberg, R.W. S.A.	8. Performing Organization Report No. TRP-03-387b-20		
9. Performing Organization Name and Address Midwest Roadside Safety Facility (MwRSF) Nebraska Transportation Center University of Nebraska-Lincoln			10. Work Unit No.
Main Office:Outdoor Test Site:Prem S. Paul Research Center at Whittier School4630 N.W. 36th StreetRoom 130, 2200 Vine StreetLincoln, NebraskaLincoln, Nebraska 68583-085368524			11. Contract TPF-5(193) Supplement #119
12. Sponsoring Agency Name an Midwest Pooled Fund Program	13. Type of Report and Period Covered Final Report: 2018 – 2020		
1500 Nebraska Highway 2 Lincoln, Nebraska 68502			14. Sponsoring Agency Code RPFP – 18-CONC-1
15. Supplementary Notes	Department of Tra	asportation Federal Highw	av Administration

16. Abstract

Portable concrete barriers (PCBs) are commonly used to protect work-zone personnel and to shield motorists from hazards in construction areas. It is not uncommon to encounter longitudinal gaps within PCB installations due to the practice of constructing and connecting the barriers from different ends during setup or contractor operations. Longitudinal gaps can also be created due to tensioning issues following an impact event. These gaps can range from 6 in. (152 mm) to a full barrier segment length of 12.5 ft (3.8 m). Longitudinal gaps between adjacent installations of PCB systems pose a serious safety concern for the errant motorist.

The objective of this research study was to develop a treatment for shielding the longitudinal gaps that occur between adjacent installations of PCB systems. The research conducted in this Phase II effort focused on the evaluation of the stiffened, thrie-beam, gap-spanning, hardware that was developed in the Phase I research effort. A test installation composed of 15 PCBs with a longitudinal gap between the eighth and ninth barriers was selected, and full-scale crash testing was conducted on the gap-spanning hardware. Test nos. GSH-1 and GSH-2 were conducted to *Manual for Assessing Safety Hardware 2016* (MASH 2016) test designation no. 3-11 in order to evaluate the thrie-beam, gap-spanning hardware of the PCB system. The tests were selected to evaluate the length of need of the system, as well as the transition from the gap-spanning hardware to the PCBs. In both tests, the 2270P vehicle was contained and safely redirected. Recommendations were also provided for system implementation and future installation and are detailed within the report.

17. Key Words Highway Safety, Crash Test, Road Test, MASH 2016, Portable Conc Deflection, Thrie-Beam, Gap-Spa	dside Appurtenances, Compliance rete Barrier, PCB, Lateral nning Hardware, and Transition	18. Distribution Statement No restrictions. Document available from: National Technical Information Services, Springfield, Virginia 22161		
19. Security Classification (of this report)20. Security Classification (of this page)		21. No. of Pages	22. Price	
Unclassified	Unclassified	201		

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized

DISCLAIMER STATEMENT

This material is based upon work supported by the Federal Highway Administration, U.S. Department of Transportation and the Midwest Pooled Fund Program under TPF-5(193) Supplement #119. The contents of this report reflect the views and opinions of the authors who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the University of Nebraska-Lincoln, state highway departments participating in the Midwest Pooled Fund Program nor the Federal Highway Administration, U.S. Department of Transportation. This report does not constitute a standard, specification, or regulation. Trade or manufacturers' names, which may appear in this report, are cited only because they are considered essential to the objectives of the report. The United States (U.S.) government and the State of Nebraska do not endorse products or manufacturers.

UNCERTAINTY OF MEASUREMENT STATEMENT

The Midwest Roadside Safety Facility (MwRSF) has determined the uncertainty of measurements for several parameters involved in standard full-scale crash testing and non-standard testing of roadside safety features. Information regarding the uncertainty of measurements for critical parameters is available upon request by the sponsor and the Federal Highway Administration.

INDEPENDENT APPROVING AUTHORITY

The Independent Approving Authority (IAA) for the data contained herein was Dr. John Reid, Professor.

ACKNOWLEDGEMENTS

The authors wish to acknowledge several sources that made a contribution to this project: (1) the Midwest Pooled Fund Program funded by the California Department of Transportation, Florida Department of Transportation, Georgia Department of Transportation, Hawaii Department of Transportation, Illinois Department of Transportation, Indiana Department of Transportation, Iowa Department of Transportation, Kansas Department of Transportation, Kentucky Department of Transportation, Minnesota Department of Transportation, Missouri Department of Transportation, Nebraska Department of Transportation, New Jersey Department of Transportation, North Carolina Department of Transportation, Ohio Department of Transportation, South Carolina Department of Transportation, South Dakota Department of Transportation, Utah Department of Transportation, Virginia Department of Transportation, Wisconsin Department of Transportation, and Wyoming Department of Transportation for sponsoring this project; and (2) MwRSF personnel for constructing the barriers and conducting the crash tests.

Acknowledgement is also given to the following individuals who contributed to the completion of this research project.

Midwest Roadside Safety Facility

J.D. Reid, Ph.D., Professor J.C. Holloway, M.S.C.E., Assistant Director - Physical Testing Division K.A. Lechtenberg, M.S.M.E., Research Engineer J.D. Rasmussen, Ph.D., P.E., Research Associate Professor C.S. Stolle, Ph.D., Research Assistant Professor J.S. Steelman, Ph.D., P.E., Associate Professor M. Asadollahi Pajouh, Ph.D., P.E., Research Assistant Professor A.T. Russell, B.S.B.A., Testing and Maintenance Technician II E.W. Krier, B.S., Construction and Testing Technician II S.M. Tighe, Construction and Testing Technician I D.S. Charroin, Construction and Testing Technician I M.A. Rasmussen, Construction and Testing Technician I M.T. Ramel, B.S.C.M., former Construction and Testing Technician I R.M. Novak, Construction and Testing Technician I T.C. Donahoo, Construction and Testing Technician I J.T. Jones, Construction and Testing Technician I J.E. Kohtz, B.S.M.E., CAD Technician E.L. Urbank, B.A., Research Communication Specialist Z.Z. Jabr, Engineering Technician Undergraduate and Graduate Research Assistant

California Department of Transportation

Bob Meline, Chief, Roadside Safety Research Branch David Whitesel, P.E., Transportation Engineer John Jewell, P.E., Senior Transportation Engineer, Specialist

Florida Department of Transportation

Derwood C. Sheppard, Jr., P.E., Design Standards Publication Manager, Roadway Design Engineer

Georgia Department of Transportation

Brent Story, P.E., State Design Policy Engineer Frank Flanders IV, P.E., Assistant State Design Policy Engineer

Hawaii Department of Transportation

James Fu, P.E., State Bridge Engineer Dean Takiguchi, P.E., Engineer, Bridge Design Section Kimberly Okamura, Engineer, Bridge Design Section

Illinois Department of Transportation

Filiberto Sotelo, Safety Evaluation Engineer Martha Brown, P.E., Safety Evaluation Unit Chief

Indiana Department of Transportation

Katherine Smutzer, P.E., Standards Engineer Elizabeth Phillips, P.E., Standards and Policy Manager

Iowa Department of Transportation

Chris Poole, P.E., Roadside Safety Engineer Brian Smith, P.E., Methods Engineer Daniel Harness, P.E., Transportation Engineer Specialist Stuart Nielsen, P.E., Transportation Engineer Administrator, Design Elijah Gansen, P.E., Geometrics Engineer

Kansas Department of Transportation

Ron Seitz, P.E., Director of Design Scott King, P.E., Road Design Bureau Chief Thomas Rhoads, P.E., Road Design Leader, Bureau of Road Design

Brian Kierath Jr., Engineering Associate III, Bureau of Road Design

Kentucky Department of Transportation

Jason J. Siwula, P.E., Assistant State Highway Engineer Kevin Martin, P.E., Transportation Engineer Specialist Gary Newton, Engineering Tech III, Design Standards

Minnesota Department of Transportation

Michael Elle, P.E., Design Standards Engineer Michelle Moser, P.E., Assistant Design Standards Engineer

Missouri Department of Transportation

Sarah Kleinschmit, P.E., Policy and Innovations Engineer

Nebraska Department of Transportation

Phil TenHulzen, P.E., Design Standards Engineer Jim Knott, P.E., Construction Engineer Mike Owen, P.E., State Roadway Design Engineer Mick Syslo, P.E., Materials and Research Engineer & Division Head

Mark Fischer, P.E., PMP, Research Program Manager Lieska Halsey, Research Project Manager Angela Andersen, Research Coordinator David T. Hansen, Internal Research Coordinator Jodi Gibson, Former Research Coordinator

New Jersey Department of Transportation

Hung Tang, Senior Engineer, Transportation Joseph Warren, Assistant Engineer, Transportation

North Carolina Department of Transportation

Neil Mastin, P.E., Manager, Transportation Program Management – Research and Development

D. D. "Bucky" Galloway, P.E., CPM, Field Operations Engineer

Brian Mayhew, P.E., State Traffic Safety Engineer Joel Howerton, P.E., Plans and Standards Engineer

Ohio Department of Transportation

Don Fisher, P.E., Roadway Standards Engineer

South Carolina Department of Transportation

J. Adam Hixon, P.E., Design Standards Associate Mark H. Anthony, P.E., Letting Preparation Engineer Henry Cross, P.E., Design Standards Engineer Jason Hall, P.E., Engineer

South Dakota Department of Transportation

David Huft, P.E., Research Engineer Bernie Clocksin, P.E., Standards Engineer

Utah Department of Transportation

Shawn Debenham, Traffic and Safety Specialist Glenn Blackwelder, Operations Engineer

Virginia Department of Transportation

Charles Patterson, P.E., Standards/Special Design Section Manager

Andrew Zickler, P.E., Complex Bridge Design and ABC Support Program Manager

Wisconsin Department of Transportation

Erik Emerson, P.E., Standards Development Engineer Rodney Taylor, P.E., Roadway Design Standards Unit Supervisor

Wyoming Department of Transportation

William Wilson, P.E., Architectural and Highway Standards Engineer

Federal Highway Administration

David Mraz, Division Bridge Engineer, Nebraska Division Office

TABLE OF CONTENTS

DISCLAIMER STATEMENT	ii
UNCERTAINTY OF MEASUREMENT STATEMENT	ii
INDEPENDENT APPROVING AUTHORITY	ii
ACKNOWLEDGEMENTS	iii
LIST OF FIGURES	vii
LIST OF TABLES	xi
1 INTRODUCTION 1.1 Background 1.2 Objective 1.3 Scope	1 1 1 2
2 TEST REQUIREMENTS AND EVALUATION CRITERIA 2.1 Test Requirements 2.2 Evaluation Criteria	3 3 4
3 TEST CONDITIONS. 3.1 Test Facility	
4 DESIGN DETAILS - TEST NO. GSH-1	
 5 FULL-SCALE CRASH TEST NO. GSH-1 [12.5-FT (3.8-M) GAP] 5.1 Weather Conditions 5.2 Test Description 5.3 Barrier Damage 5.4 Vehicle Damage 5.5 Occupant Risk 5.6 Discussion 	
6 DESIGN DETAILS TEST NO. GSH-2	65
7 FULL-SCALE CRASH TEST NO. GSH-2 [3-FT (0.9-M) GAP] 7.1 Weather Conditions 7.2 Test Description	85 85 85

7.3 Barrier Da	mage	
7.4 Vehicle D	amage	
7.5 Occupant	Risk	109
7.6 Discussion	1	
8 SUMMARY, CON	CLUSIONS, AND RECOMMENDATIONS	
8.1 Summary	and Conclusions	
8.2 Recomme	ndations	113
8.2.1 0	Sap Lengths and Rail Spacers	
8.2.2 T	Thrie Beam Anchoring	116
8.2.3 T	Toe Plate Anchoring	116
8.2.4 N	Ainimum System Length	117
8.2.5 (Other Barrier Types	117
9 MASH EVALUAT	ION	
9.1.1 7	Sest Matrix	118
9.1.2 F	Full-Scale Crash Test Results	119
9.1.3 N	AASH 2016 Evaluation	120
10 REFERENCES		121
11 APPENDICES		122
Appendix A.	Vehicle Center of Gravity Determination	123
Appendix B.	Material Specifications	128
Appendix C.	Vehicle Deformation Records	152
Appendix D.	Accelerometer and Rate Transducer Data Plots, Test No. GSH	I-1 167
Appendix E.	Accelerometer and Rate Transducer Data Plots, Test No. GSH	[-2 184

LIST OF FIGURES

Figure 1. Test Vehicle, Test No. GSH-1	8
Figure 2. Test Vehicle's Interior Floorboards and Undercarriage, Test No. GSH-1	9
Figure 3. Vehicle Dimensions, Test No. GSH-1	10
Figure 4. Test Vehicle, Test No. GSH-2	11
Figure 5. Test Vehicle's Interior Floorboards and Undercarriage, Test No. GSH-2	12
Figure 6. Vehicle Dimensions, Test No. GSH-2	13
Figure 7. Target Geometry, Test No. GSH-1	14
Figure 8. Target Geometry, Test No. GSH-2	15
Figure 9. Camera Locations, Speeds, and Lens Settings, Test No. GSH-1	18
Figure 10. Camera Locations, Speeds, and Lens Settings, Test No. GSH-2	19
Figure 11. Test Installation Layout, Test No. GSH-1	21
Figure 12. Gap Details, Test No. GSH-1	22
Figure 13. Detail C and Detail D Views, Test No. GSH-1	23
Figure 14. Anchor Bolt Connection Details - Traffic Side, Test No. GSH-1	24
Figure 15. Anchor Bolts Connection Details - Non-Traffic Side, Test No. GSH-1	25
Figure 16. Section K-K and Section L-L Views, Test No. GSH-1	26
Figure 17. PCB Details, Test No. GSH-1	27
Figure 18. PCB Details, Section M-M and Section N-N, Test No. GSH-1	28
Figure 19. PCB Rebar Details, Test No. GSH-1	29
Figure 20. Connector Pin Details, Test No. GSH-1	30
Figure 21. Stiffener Assembly, Test No. GSH-1	31
Figure 22. Stiffener Component Details, Test No. GSH-1	32
Figure 23. Rail, Terminal Connector, and Toe Plate Details, Test No. GSH-1	33
Figure 24. Hardware, Test No. GSH-1	34
Figure 25. Bill of Materials, Test No. GSH-1	35
Figure 26. Test Installation Photographs, Test No. GSH-1	36
Figure 27. Test Installation Photographs, Test No. GSH-1	37
Figure 28. Test Installation Photographs, Gap-Spanning Hardware Anchorage, Test No. GSH-1	38
Figure 29. Test Installation Photographs. Gap Stiffener Hardware. Test No. GSH-1	
Figure 30. Impact Location. Test No. GSH-1	
Figure 31. Sequential Photographs. Test No. GSH-1	
Figure 32. Additional Sequential Photographs. Test No. GSH-1	45
Figure 33. Documentary Photographs, Test No. GSH-1	46
Figure 34. Additional Documentary Photographs, Test No. GSH-1	47
Figure 35. Vehicle Final Position and Trajectory Marks, Test No. GSH-1	48
Figure 36. Overall System Damage, Test No. GSH-1	51
Figure 37. Overall System Damage (Non-traffic Side), Test No. GSH-1	52
Figure 38. Thrie-Beam Damage, Test No. GSH-1	53
Figure 39. Barrier No. 9 Damage, Test No. GSH-1	54
Figure 40. Longitudinal Rebar Shear, Non-Traffic Side, Barrier No. 9, Test No. GSH-1	55
Figure 41. PCB Gap-Spanning Hardware Connection Damage, Test No. GSH-1	56
Figure 42. Permanent Set Deflection, Dynamic Deflection, and Working Width, Test No.	
GSH-1	57
Figure 43. Vehicle Damage, Test No. GSH-1	59

Figure 44. Front-Left Vehicle Damage, Test No. GSH-1	60
Figure 45. Test Vehicle's Post Test Interior Floorboards and Undercarriage, Test No.	
GSH-1	61
Figure 46. Summary of Test Results and Sequential Photographs, Test No. GSH-1	64
Figure 47. Test Installation Layout, Test No. GSH-2	66
Figure 48. Gap Details, Test No. GSH-2	67
Figure 49. Detail C and Detail D Views, Test No. GSH-2	68
Figure 50. Anchor Bolt Connection Details - Traffic Side, Test No. GSH-2	69
Figure 51. Anchor Bolt Connection Details - Non-Traffic Side, Test No. GSH-2	70
Figure 52. Section G-G and Section H-H Views, Test No. GSH-2	71
Figure 53. PCB Details, Test No. GSH-2	72
Figure 54. PCB Details, Section I-I and Section J-J, Test No. GSH-2	73
Figure 55. PCB Rebar Details, Test No. GSH-2	74
Figure 56. Connector Pin Details, Test No. GSH-2	75
Figure 57. Stiffener Assembly, Test No. GSH-2	76
Figure 58. Stiffener Component Details, Test No. GSH-2	77
Figure 59. Rail, Terminal Connector, and Toe Plate Details, Test No. GSH-2	78
Figure 60. Hardware, Test No. GSH-2	79
Figure 61. Bill of Materials, Test No. GSH-2	80
Figure 62. Test Installation Photographs, Test No. GSH-2	81
Figure 63. Test Installation Photographs, Test No. GSH-2	82
Figure 64. Test Installation Photographs, Test No. GSH-2	83
Figure 65. Test Installation Photographs, Gap-Spanning Hardware Anchorage, Test No	
GSH-2	84
Figure 66. Impact Location, Test No. GSH-2	88
Figure 67. Sequential Photographs, Test No. GSH-2	89
Figure 68. Additional Sequential Photographs, Test No. GSH-2	90
Figure 69. Documentary Photographs, Test No. GSH-2	91
Figure 70. Additional Documentary Photographs, Test No. GSH-2	92
Figure 71. Vehicle Final Position and Trajectory Marks, Test No. GSH-2	93
Figure 72. Overall System Damage, Test No. GSH-2	96
Figure 73. Overall System Damage (Non-traffic Side), Test No. GSH-2	97
Figure 74. Thrie-Beam and Barrier No. 9 Damage, Test No. GSH-2	98
Figure 75. Barrier No. 9 Damage, 1 est No. GSH-2	99
Figure 76. PCB Gap-Spanning Hardware Connection Damage, Test No. GSH-2	100
Figure //. Barrier No. 10 Damage, 1est No. GSH-2	101
Figure 78. Barrier No. 11 Damage, 1est No. GSH-2	102
Figure 79. Permanent Set Deflection, Dynamic Deflection, and working width, Test No.	102
USH-2	105
Figure 80. Venicle Danlage, Test No. CSH-2	106
Figure 81. Left-Side Venicle Damage, Test No. CSH-2	100
Figure 62. FIOIII-Left Vehicle Dallage, Test NO. USH-2	107
GSH_2	100
Figure 84 Summary of Test Results and Sequential Photographs, Test No. CSU 2	100
Figure 85 PCB Gan-Snanning Hardware Schematic Gan Length $= 0.44 \times 1.44$	111
Figure 86 PCB Gan-Spanning Hardware Schematic, Gap Length $= 0$ it $> x \ge 1$ it	113
Figure 60. FOD Gap-Spanning Hardware Schematic, Gap Length -1 it $-x \ge 4$ it	113

Figure 87. PCB Gap-Spanning Hardware Schematic, Gap Length = 4 ft $< x \le 7$ ft	.115
Figure 88. PCB Gap-Spanning Hardware Schematic, Gap Length = 7 ft $< x \le 12.5$ ft	.115
Figure A-1. Vehicle Mass Distribution, Test No. GSH-1	.124
Figure A-2. Vehicle Mass Distribution, Test No. GSH-1, Cont	.125
Figure A-3. Vehicle Mass Distribution, Test No. GSH-2	.126
Figure A-4. Vehicle Mass Distribution, Test No. GSH-2, Cont	.127
Figure B-1. PCB Certification, Test Nos. GSH-1 and GSH-2	.130
Figure B-2. #4 (13-mm) Rebar ASTM A615 Gr. 60, Test Nos. GSH-1 and GSH-2	.131
Figure B-3. #4 (13-mm) Rebar ASTM A615 Gr. 60, Test Nos. GSH-1 and GSH-2	.132
Figure B-4. #5 (16-mm) Rebar ASTM A615 Gr. 60, Test Nos. GSH-1 and GSH-2	.133
Figure B-5. #5 (16-mm) Rebar ASTM A615 Gr. 60, Test Nos. GSH-1 and GSH-2	.134
Figure B-6. #6 (19-mm) Rebar ASTM A615 Gr. 60, Test Nos. GSH-1 and GSH-2	.135
Figure B-7. #6 (19-mm) Rebar ASTM A615 Gr. 60, Test Nos. GSH-1 and GSH-2	.136
Figure B-8. #6 (19-mm) Rebar ASTM A706 Gr. 60, Test Nos. GSH-1 and GSH-2	.137
Figure B-9. 1 ¹ / ₄ -in. (32-mm) Diameter Connector Pin, Test Nos. GSH-1 and GSH-2	.138
Figure B-10. ¹ / ₄ -in. (6-mm) Steel Plate, Test Nos. GSH-1 and GSH-2	.139
Figure B-11. 10-gauge (4-mm) Thrie-Beam Terminal Connector, Test Nos. GSH-1 and	
GSH-2	.140
Figure B-12. 10-gauge (4-mm) Thrie-Beam Terminal Connector, Test Nos. GSH-1 and	
GSH-2	.141
Figure B-13. 12-gauge (3-mm) Thrie-Beam Section, Test Nos. GSH-1 and GSH-2	
Figure B-14. 12-gauge (3-mm) Thrie-Beam Section, Test Nos. GSH-1 and GSH-2	.143
Figure B-15. 5%-in. (16-mm) Steel Plate, Test Nos. GSH-1 and GSH-2	.144
Figure B-16. ¾-in. (19-mm) Diameter Wedge Bolt, Test Nos. GSH-1 and GSH-2	.145
Figure B-17. 5%-in. (16-mm) Diameter Guardrail Bolt, Test Nos. GSH-1 and GSH-2	.146
Figure B-18. 5%-in. (16-mm) Diameter Guardrail Bolt, Test Nos. GSH-1 and GSH-2	.147
Figure B-19. 5%-in. (16-mm) Diameter Guardrail Nut, Test Nos. GSH-1 and GSH-2	.148
Figure B-20. ⁵ / ₈ -in. (16-mm) Diameter Guardrail Nut, Test Nos. GSH-1 and GSH-2	.149
Figure B-21. ³ / ₄ -in. (19-mm) Diameter, 2-in. (51-mm) Long Heavy Hex Head Bolt and Nut,	
Test Nos. GSH-1 and GSH-2	.150
Figure B-22. ³ / ₄ -in. (19-mm) Diameter Plain Flat Washer, Test Nos. GSH-1 and GSH-2	.151
Figure C-1. Floor Pan Deformation Data – Set 1, Test No. GSH-1	.153
Figure C-2. Floor Pan Deformation Data – Set 2, Test No. GSH-1	.154
Figure C-3. Floor Pan Deformation Data – Set 1, Test No. GSH-2	.155
Figure C-4. Floor Pan Deformation Data – Set 2, Test No. GSH-2	.156
Figure C-5. Occupant Compartment Deformation Data – Set 1, Test No. GSH-1	.157
Figure C-6. Occupant Compartment Deformation Data – Set 2, Test No. GSH-1	.158
Figure C-7. Maximum Occupant Compartment Deformation by Location, Test No. GSH-1	.159
Figure C-8. Occupant Compartment Deformation Data – Set 1, Test No. GSH-2	.160
Figure C-9. Occupant Compartment Deformation Data – Set 2, Test No. GSH-2	.161
Figure C-10. Maximum Occupant Compartment Deformation by Location, Test No.	
GSH-2	.162
Figure C-11. Exterior Vehicle Crush (NASS) - Front, Test No. GSH-1	.163
Figure C-12. Exterior Vehicle Crush (NASS) - Side, Test No. GSH-1	.164
Figure C-13. Exterior Vehicle Crush (NASS) - Front, Test No. GSH-2	.165
Figure C-14. Exterior Vehicle Crush (NASS) - Side, Test No. GSH-2	.166
Figure D-1. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. GSH-1	.168

Figure D-2. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. GSH-1	169
Figure D-3. Longitudinal Occupant Displacement (SLICE-1), Test No. GSH-1	170
Figure D-4. 10-ms Average Lateral Deceleration (SLICE-1), Test No. GSH-1	171
Figure D-5. Lateral Occupant Impact Velocity (SLICE-1), Test No. GSH-1	172
Figure D-6. Lateral Occupant Displacement (SLICE-1), Test No. GSH-1	173
Figure D-7. Vehicle Angular Displacements (SLICE-1), Test No. GSH-1	174
Figure D-8. Acceleration Severity Index (SLICE-1), Test No. GSH-1	175
Figure D-9. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. GSH-1	176
Figure D-10. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. GSH-1	177
Figure D-11. Longitudinal Occupant Displacement (SLICE-2), Test No. GSH-1	178
Figure D-12. 10-ms Average Lateral Deceleration (SLICE-2), Test No. GSH-1	179
Figure D-13. Lateral Occupant Impact Velocity (SLICE-2), Test No. GSH-1	
Figure D-14. Lateral Occupant Displacement (SLICE-2), Test No. GSH-1	181
Figure D-15. Vehicle Angular Displacements (SLICE-2), Test No. GSH-1	
Figure D-16. Acceleration Severity Index (SLICE-2), Test No. GSH-1	
Figure E-1. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. GSH-2	
Figure E-2. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. GSH-2	
Figure E-3. Longitudinal Occupant Displacement (SLICE-1), Test No. GSH-2	187
Figure E-4. 10-ms Average Lateral Deceleration (SLICE-1), Test No. GSH-2	
Figure E-5. Lateral Occupant Impact Velocity (SLICE-1), Test No. GSH-2	
Figure E-6. Lateral Occupant Displacement (SLICE-1), Test No. GSH-2	190
Figure E-7. Vehicle Angular Displacements (SLICE-1), Test No. GSH-2	191
Figure E-8. Acceleration Severity Index (SLICE-1), Test No. GSH-2	192
Figure E-9. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. GSH-2	193
Figure E-10. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. GSH-2	194
Figure E-11. Longitudinal Occupant Displacement (SLICE-2), Test No. GSH-2	195
Figure E-12. 10-ms Average Lateral Deceleration (SLICE-2), Test No. GSH-2	196
Figure E-13. Lateral Occupant Impact Velocity (SLICE-2), Test No. GSH-2	197
Figure E-14. Lateral Occupant Displacement (SLICE-2), Test No. GSH-2	198
Figure E-15. Vehicle Angular Displacements (SLICE-2), Test No. GSH-2	199
Figure E-16. Acceleration Severity Index (SLICE-2), Test No. GSH-2	200

LIST OF TABLES

Table 1. MASH 2016 TL-3 Crash Test Conditions for Longitudinal Barriers	3
Table 2. MASH 2016 Evaluation Criteria for Longitudinal Barriers	5
Table 3. Weather Conditions, Test No. GSH-1	40
Table 4. Sequential Description of Impact Events, Test No. GSH-1	41
Table 5. Sequential Description of Impact Events, Test No. GSH-1, Cont	42
Table 6. Maximum Occupant Compartment Intrusion by Location, Test No. GSH-1	62
Table 7. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. GSH-1	63
Table 8. Weather Conditions, Test No. GSH-2	85
Table 9. Sequential Description of Impact Events, Test No. GSH-2	86
Table 10. Sequential Description of Impact Events, Test No. GSH-2, Cont	87
Table 11. Maximum Occupant Compartment Intrusion by Location, Test No. GSH-2	109
Table 12. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. GSH-2	110
Table 13. Summary of Safety Performance Evaluation	113
Table 14. PCB Gap Spanning Hardware Position and Rail Spacer Recommendations for	
Variable Gap Lengths	114
Table 15. MASH 2016 TL-3 Crash Test Conditions for Longitudinal Barriers	118
Table 16. MASH 2016 TL-3 Crash Test Summary for PCB Gap-Spanning Hardware	120
Table B-1. Bill of Materials, Test Nos. GSH-1 and GSH-2	129

1 INTRODUCTION

1.1 Background

Portable concrete barriers (PCBs) are commonly used to protect work-zone personnel and to shield motorists from hazards in construction areas. It is not uncommon to encounter longitudinal gaps within PCB installations due to the practice of constructing and connecting the barriers from different ends during setup or contractor operations. Longitudinal gaps can also be created during re-tensioning issues following an impact event. These gaps can range from 6 in. (152 mm) to a full barrier segment length of 12.5 ft (3.8 m) and pose a serious safety concern for an errant motorist. Limited guidance is available for shielding this hazardous situation. Past recommendations have been to overlap two runs of barriers to prevent a longitudinal gap in PCB coverage from occurring. However, this method is undesirable due to work-zone space constraints. The necessary length of barrier overlap is relatively large and also requires significant lateral offset between the overlapped segments, which reduces available space in constricted work zones. Thus, a need existed to develop a crashworthy and efficient method for treating longitudinal gaps in adjacent runs of free-standing PCBs.

The Midwest Pooled Fund Program sponsored the Phase I effort to develop potential design concepts to safeguard the variable gaps that occur between adjacent PCB installations [1]. The initial phase of the research program included a literature review of existing PCB gap treatments and the brainstorming of potential crashworthy systems capable of accommodating variable gap lengths. LS-DYNA simulations were then conducted on the potential design concepts. The preferred Phase I design concept was recommended for full-scale crash testing to evaluate its effectiveness for the treatment of longitudinal PCB gaps.

The preferred PCB gap-spanning hardware design comprised two nested thrie-beam guardrail sections attached to the front and back sides of the PCBs adjacent to the longitudinal gap. The nested thrie-beam guardrail sections were attached to the PCBs with thrie-beam terminal connectors using wedge bolt anchors. Steel lateral stiffeners were developed that could be inserted between the parallel guardrail sections in order to strengthen the rails when longer gap lengths were encountered. The number of stiffeners installed between the thrie-beam guardrails could be adjusted depending on the length of the longitudinal gap. To minimize wheel snag during impacts with the system, steel toe plates were configured to span across the longitudinal gap and were anchored to the lower concrete sloped surface of the PCBs. The Phase I research also identified critical impact points for the proposed design concept, however, no funding was allocated for the full-scale crash testing and evaluation of the proposed design concept during the initial phase of the research program. Thus, a need remained to full-scale crash test and evaluate the new system according to the American Association of State Highway and Transportation Officials (AASHTO) *Manual for Assessing Safety Hardware, Second Edition* (MASH 2016) [2] Test Level 3 (TL-3) safety performance criteria.

1.2 Objective

The objective of the Phase I research effort was to develop a crashworthy prototype system for protecting and shielding the longitudinal gaps between adjacent installations of PCB systems, which vary between 6 in. (152 mm) and 12.5 ft. (3.8 m) in length. Phase II research focused on the evaluation of the stiffened, thrie-beam, PCB gap-spanning hardware that was developed in Phase

I. The system was evaluated according to the TL-3 criteria set forth in MASH 2016. Two full-scale vehicle crash tests were conducted according to MASH 2016 test designation no. 3-11. Recommendations for the implementation and installation of the gap-spanning hardware were provided.

1.3 Scope

The overall research objectives were accomplished through two phases and a series of several tasks. The Phase I research effort began with a literature search to review existing designs and guidance regarding the treatment of longitudinal gaps between adjacent installations of PCB systems. Next, new ideas were brainstormed to identify potential designs for spanning the PCB gaps. A design utilizing a section of stiffened, thrie-beam guardrail was selected as the preferred design concept due to the simplicity and versatility of the design, as well as the use of existing hardware. LS-DYNA computer simulation was used to evaluate and refine the preferred design concept, as well as to estimate the expected impact loads and determine the critical impact points for the full-scale crash testing of the system.

The Phase II research effort detailed herein evaluated the performance of the PCB gapspanning hardware through full-scale vehicle crash testing. Two full-scale crash tests were conducted under MASH 2016 test designation no. 3-11 on the stiffened, thrie-beam, PCB gapspanning hardware: the first full-scale crash test evaluated the structural capacity of the gapspanning hardware, and the second full-scale crash test evaluated the potential for vehicle instability at the overlap of the gap-spanning hardware and the PCBs. Following the completion of full-scale crash testing and evaluation of the barrier's performance, recommendations for implementation and installation of the PCB gap-spanning hardware were made.

2 TEST REQUIREMENTS AND EVALUATION CRITERIA

2.1 Test Requirements

Roadside hardware systems, such as the PCB gap spanning hardware evaluated herein, must satisfy impact safety standards to be declared eligible for federal reimbursement by the Federal Highway Administration (FHWA) for use on the National Highway System (NHS). For new hardware, these safety standards consist of the guidelines and procedures published in MASH 2016 [2]. The PCB gap spanning hardware evaluated in this report functions primarily longitudinal barrier. According to TL-3 of MASH 2016, longitudinal barrier systems and their transitions must be subjected to two full-scale vehicle crash tests, as summarized in Table 1. Note that there is no difference between MASH 2009 [3] and MASH 2016 for longitudinal barriers such as the system tested in this project, except that additional occupant compartment deformation measurements, photographs, and documentation are required by MASH 2016.

		Test		Vehicle	Impact Conditions		
Test Article	Barrier Section	Designation No.	Test Vehicle	Weight, lb (kg)	Speed, mph (km/h)	Angle, degrees	Evaluation Criteria ¹
Longitudinal Barrier	al Length- of-Need	3-10	1100C	2,425 (1,100)	62 (100.0)	25	A,D,F,H,I
		3-11	2270P	5,000 (2,270)	62 (100)	25	A,D,F,H,I

Table 1. MASH 2016 TL-3 Crash Test Conditions for Longitudinal Barriers

¹ Evaluation criteria explained in Table 2.

It should be noted that the MASH 2016 test matrix detailed herein represents the recommended crash tests that should be performed. However, some of these crash tests may be deemed non-critical and unnecessary. For the PCB gap spanning hardware system evaluated herein, the 1100C vehicle test, test designation no. 3-10, was deemed non-critical for evaluation of the barrier system. Previous testing of PCBs and safety shape barriers has indicated that small cars interact in a safe manner with this type of roadside hardware. In test no. 2214NJ-1, a MASH test designation no. 3-10 full-scale crash test was successfully conducted on a permanent New Jersey shape concrete parapet under NCHRP Project 22-14(2) [4]. In Texas A&M Transportation Institute (TTI) test report no. 607911-1&2, a MASH test designation no. 3-10 full-scale crash test was successfully conducted on a free-standing F-shape PCB similar to the barrier used in this study [5]. These two tests indicate that safety shape barriers are capable of successfully capturing and redirecting a 1100C vehicle in both free-standing PCB and permanent concrete parapet applications. Additionally, the increased toe height of New Jersey shape barriers tends to produce increased vehicle climb and instability as compared to the F-shape geometry. Thus, one would expect that the PCB gap-spanning hardware with similar geometry evaluated in this study would perform similarly to these previous MASH 1100C vehicle tests in terms of capture and redirection, and the 1100C vehicle would not be critical for structural loading of the hardware. As such, it was believed that test designation no. 3-10 with the 1100C vehicle would be non-critical for evaluation of the tie-down anchorages for use with F-shape PCBs. MASH 2016 test designation no. 3-11 was

the more critical evaluation test due to concerns for increased barrier loading during 2270P impacts and to determine dynamic deflection and working width. Thus, only test designation no. 3-11 was conducted on the PCB gap-spanning hardware evaluated herein. It should be noted that any tests deemed non-critical and unnecessary may eventually need to be performed if additional knowledge gained over time or revisions to the MASH 2016 criteria demonstrates a concern or need.

During the development of the PCB gap-spanning hardware in Phase I, an analysis was performed on the critical impact points (CIPs) for the system. This analysis found that there were two CIPs for the PCB gap-spanning hardware. One CIP was chosen to maximize structural loading of the barrier system, and a second was selected to maximize the potential for vehicle instability. Note that snag of impacting vehicles was considered and evaluated in the CIP analysis. However, the analysis demonstrated that vehicle snag was not a critical behavior due the use of the thrie beam rail and toe plate elements that connect the system to the PCB segments, and any vehicle snag that was observed in the simulation analysis of potential CIPs was less of a concern than the structural loading and vehicle stability CIPs that were identified. Full details on the CIP analysis are provided in the Phase I report [1]. The two identified CIPs were as follows:

- 1. Analysis of the barrier system with the largest possible barrier gap of 12.5 ft (3.81 m) identified that the structural loading of the PCB gap-spanning hardware was the greatest when the system was impacted 72 in. (1,829 mm) upstream from the first PCB segment on the downstream end of the gap-spanning hardware.
- 2. Analysis of the barrier system with a small barrier gap of 3 ft (0.91 m) identified the potential for the 2270P vehicle's front wheel and tire to be held down by the thrie beam rail element spanning the PCB gap when the hardware was impacted where it overlapped the adjacent PCB segments. This behavior tended to induce significant roll motions in the 2270P vehicle, which raised concerns for potential vehicle instability. As such, a second CIP was selected to be 12 in. (305 mm) downstream from the upstream end of the first PCB segment on the downstream end of the gap-spanning hardware.

Based on this CIP analysis, two full-scale crash tests were conducted under MASH test designation no. 3-11 impact conditions. The first test was conducted to evaluate the maximum structural loading of the PCB gap-spanning hardware, and the second test was conducted to evaluate potential vehicle instability.

2.2 Evaluation Criteria

Evaluation criteria for full-scale vehicle crash testing are based on three appraisal areas: (1) structural adequacy; (2) occupant risk; and (3) vehicle trajectory after collision. Criteria for structural adequacy are intended to evaluate the ability of the PCB system and gap-spanning hardware to contain and redirect impacting vehicles. In addition, controlled lateral deflection of the test article is acceptable. Occupant risk evaluates the degree of hazard to occupants in the impacting vehicle. Post-impact vehicle trajectory is a measure of the potential of the vehicle to result in a secondary collision with other vehicles and/or fixed objects, thereby increasing the risk of injury to the occupants of the impacting vehicle and/or other vehicles. These evaluation criteria are summarized in Table 2 and defined in greater detail in MASH 2016 [2]. The full-scale vehicle crash tests were conducted and reported in accordance with the procedures provided in MASH 2016.

In addition to the standard occupant risk measures, the Post-Impact Head Deceleration (PHD), the Theoretical Head Impact Velocity (THIV), the Acceleration Severity Index (ASI), and exit box criteria were determined and reported. Additional discussion on PHD, THIV and ASI is provided in MASH 2016.

Table 2. MASH 2016 Evaluation Criteria for Longitudinal Barriers

Structural Adequacy	A.	Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable.			
	D.	Detached elements, fragments or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone. Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.2.2 and Appendix E of MASH 2016.			
	F.	The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.			
Occupant	 H. Occupant Impact Velocity (OIV) (see Appendix A, Section A5.2.2 MASH 2016 for calculation procedure) should satisfy the followin limits: 				
Risk		Occupant Impact Velocity Limits			
		Component	Preferred	Maximum	
		Longitudinal and Lateral	30 ft/s (9.1 m/s)	40 ft/s (12.2 m/s)	
	I.	The Occupant Ridedown Acceleration (ORA) (see Appendix A, Section A5.2.2 of MASH 2016 for calculation procedure) should satisfy the following limits:			
		Occupant Ridedown Acceleration Limits			
		Component	Preferred	Maximum	
		Longitudinal and Lateral	15.0 g's	20.49 g's	

3 TEST CONDITIONS

3.1 Test Facility

The Outdoor Test Site is located at the Lincoln Air Park on the northwest side of the Lincoln Municipal Airport and is approximately 5 miles (8.0 km) northwest of the University of Nebraska-Lincoln.

3.2 Vehicle Tow and Guidance System

A reverse-cable, tow system with a 1:2 mechanical advantage was used to propel the test vehicle. The distance traveled and the speed of the tow vehicle were one-half that of the test vehicle. The test vehicle was released from the tow cable before impact with the barrier system. A digital speedometer on the tow vehicle increased the accuracy of the test vehicle impact speed.

A vehicle guidance system developed by Hinch [6] was used to steer the test vehicle. A guide flag, attached to the right-front wheel and the guide cable, was sheared off before impact with the barrier system. The $\frac{3}{8}$ -in. (9.5-mm) diameter guide cable was tensioned to approximately 3,500 lb (15.6 kN) and supported both laterally and vertically every 100 ft (30.5 m) by hinged stanchions. The hinged stanchions stood upright while holding up the guide cable, but as the vehicle was towed down the line, the guide flag struck and knocked each stanchion to the ground.

3.3 Test Vehicle

For test no. GSH-1, a 2011 Dodge Ram 1500 Quad Cab pickup truck was used as the test vehicle. The curb, test inertial, and gross static vehicle weights were 4,984 lb (2,261 kg), 5,005 lb (2,270 kg), and 5,165 lb (2,343 kg), respectively. The test vehicle is shown in Figures 1 and 2, and vehicle dimensions are shown in Figure 3. Note that in Figure 3, vehicle dimension A is out of compliance by ¹/₄ in. (6 mm). The ¹/₄-in. (6-mm) deviation was deemed non-critical to the outcome of the test and, as the vehicle was of acceptable year and model according to MASH 2016, was utilized in the evaluation of the test installation.

For test no. GSH-2, a 2013 Dodge Ram 1500 Quad Cab pickup truck was used as the test vehicle. The curb, test inertial, and gross static vehicle weights were 5,196 lb (2,357 kg), 5,013 lb (2,274 kg), and 5,173 lb (2,346 kg), respectively. The test vehicle is shown in Figures 4 and 5, and vehicle dimensions are shown in Figure 6. Note that in Figure 6, vehicle dimension M is out of compliance by ¹/₄ in. (6 mm). The ¹/₄-in. (6-mm) deviation was deemed non-critical to the outcome of the test and, as the vehicle was of acceptable year and model according to MASH 2016, was utilized in the evaluation of the test installation.

The longitudinal component of the center of gravity (c.g.) was determined using the measured axle weights. The Suspension Method [7] was used to determine the vertical component of the c.g. for the pickup trucks. This method is based on the principle that the c.g. of any freely suspended body is in the vertical plane through the point of suspension. The vehicles were suspended successively in three positions, and the respective planes containing the c.g. were established. The intersection of these planes pinpointed the final c.g. location for the test inertial condition. The location of the final c.g. is shown in Figures 3 and 7 for test no. GSH-1 and Figures

6 and 8 for test no. GSH-2. Data used to calculate the location of the c.g. and ballast information are shown in Appendix A.

Square, black- and white-checkered targets were placed on the vehicles for reference to be viewed from the high-speed digital video cameras and aid in the video analysis, as shown in Figures 7 and 8 for test nos. GSH-1 and GSH-2, respectively. Round, checkered targets were placed at the c.g. on the left-side door, the right-side door, and the roof of the vehicles.

The front wheels of the test vehicles were aligned to vehicle standards except the toe-in value was adjusted to zero such that the vehicles would track properly along the guide cable. A 5B flash bulb was mounted beneath each vehicle's left-side windshield wiper and was fired by a pressure tape switch mounted at the impact corner of the bumper. The flash bulb was fired upon initial impact with the test article to create a visual indicator of the precise time of impact on the high-speed digital videos. A radio-controlled brake system was installed in the test vehicle so the vehicle could be brought safely to a stop after the test.

Figure 1. Test Vehicle, Test No. GSH-1

Figure 2. Test Vehicle's Interior Floorboards and Undercarriage, Test No. GSH-1

Date:	6/28/2018	Test Name:	GSH-1	VIN No: 1D7RB1GP6BS553873		
Year:	2011	Make:	Dodge	Model: Ram 1500 Quad Cab		
Tire Size:	p265/70R17	Tire Inflation Pressure:	37 Psi	Odometer: 260114		
	2			Vehicle Geometry - in. (mm) Target Ranges listed below		
				$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
				I: 8 1/4 (210) J: 26 3/4 (679) K: 20 (508) L: 29 1/8 (740) M: 67 5/8 (1718) N: 67 5/8 (1718) 67 ± 1.5 (1700±38) N: 67 5/8 (1700±38) O: 44 5/8 (1133) P: 5 (127) Q: 31 1/8 (791) R: 18 1/4 (464)		
-		C		S: <u>13 1/2 (343)</u> T: <u>76 1/4 (1937)</u>		
Mass Distrib	ution lb. (kg)			U (impact width): 75 1/4 (1911)		
Gross Static	LF <u>1486 (674)</u> LR <u>1112 (504)</u>	_ RF1403 (636) _ RR1164 (528)		Wheel Center Height (Front): <u>15 (381)</u> Wheel Center Height (Rear): <u>15 1/2 (394)</u> Wheel Well Clearance (Front): <u>35 3/4 (908)</u>		
Weights Ib. (kg)	Curb	Test Inertial	Gross Static	Wheel Well Clearance (Rear): 38 3/8 (975)		
W-front	2852 (1294)	2796 (1268)	2889 (1310)	Bottom Frame Height (Front): 12 1/2 (318)		
W-rear	2132 (967)	2209 (1002)	2276 (1032)	Bottom Frame Height (Rear): 13 1/4 (337)		
W-total	4984 (2261)	5005 (2270) 5000±110 (2270±50)	5165 (2343) 5165±110 (2343±50)	Engine Type: Gasoline		
GVWR Ratin	as lb	Surrogate Occupant Da	ta			
Front	3700	Type:	Hybrid II	Drive Type: RWD		
Rear	3900	Mass:	160 lbs	Cab Style: Quad Cab		
Total	6700	Seat Position:	Left/Driver	Bed Length: 76"		
Note any damage prior to test: Right side rear bumper is bent and right side rear quarter pannel has a large dent.						

Figure 3. Vehicle Dimensions, Test No. GSH-1

Figure 4. Test Vehicle, Test No. GSH-2

Figure 5. Test Vehicle's Interior Floorboards and Undercarriage, Test No. GSH-2

Date:	7/27/2018	Test Name:	GSH-2	VIN No: 1CRR6FTXDS575838				
Year:	2013	Make:	Dodge	Model: Ram 1500				
Tire Size:	P275/60R20	Tire Inflation Pressure:	39 Psi	Odometer: 147820				
				Vehicle Geometry - in. (mm) Target Ranges listed below				
				$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
				I: 13 3/8 (340) J: 27 1/2 (699) K: 21 1/2 (546) L: 30 1/2 (775) M: 68 3/4 (1746) N: 68 1/8 (1730) 67 ± 1.5 (1700±38) N: 68 1/8 (1700±38) O: 46 (1168) P: 4 3/8 (111) 43 ± 4 (1100±75) R: 21 1/2 (546)				
-	— D — • •	EI C	F	S [.] 15 1/8 (384) T [.] 76 1/2 (1943)				
Mass Distrib	ution IIn (ka)		1	U (impact width): 72 1/4 (1835)				
Gross Static	LF <u>1477 (670)</u> LR <u>1133 (514)</u>	RF <u>1472 (668)</u> RR <u>1091 (495)</u>		Wheel Center Height (Front): <u>16 (406)</u> Wheel Center Height (Rear): <u>16 (406)</u> Wheel Well				
Weights	Curb	Test Inertial	Gross Static	Clearance (Front): <u>36 3/4 (555)</u> Wheel Well				
W-front	2922 (1325)	2842 (1289)	2949 (1338)	Bottom Frame Height (Front): 11 (279)				
W-rear	2274 (1031)	2171 (985)	2224 (1009)	Bottom Frame Height (Rear): 11 1/2 (292)				
W-total	5196 (2357)	<u>5013 (2274)</u>	5173 (2346)	Engine Type: Gasoline				
		5000±110(2270±50)	5165±110 (2343±50)	Engine Size: 4.7L V8				
GVWR Ratings lb. Surrogate Occupant Data			Transmission Type: <u>Automatic</u>					
Front	3700	Туре:	Hybrid II	Drive Type: RWD				
Rear	3900	Mass:	160 lbs.	Cab Style: Quad cab				
Total	6700	Seat Position:	Left/Driver	Bed Length: 76"				
Note any damage prior to test:								

Figure 6. Vehicle Dimensions, Test No. GSH-2

Figure 7. Target Geometry, Test No. GSH-1

Figure 8. Target Geometry, Test No. GSH-2

3.4 Simulated Occupant

For test nos. GSH-1 and GSH-2, a Hybrid II 50th-Percentile, Adult Male Dummy was placed in the left-front seat of the test vehicles with the seat belt fastened. The simulated occupant had a final weight of 160 lb (73 kg) in test nos. GSH-1 and GSH-2. As recommended by MASH 2016, the simulated occupant was not included in calculating the c.g. location.

3.5 Data Acquisition Systems

3.5.1 Accelerometers

Two environmental shock and vibration sensor/recorder systems were used to measure the accelerations in the longitudinal, lateral, and vertical directions. Both accelerometer systems were mounted near the c.g. of the test vehicles. The electronic accelerometer data obtained in dynamic testing was filtered using the SAE Class 60 and the SAE Class 180 Butterworth filter conforming to the SAE J211/1 specifications [8].

The SLICE-1 and SLICE-2 units were modular data acquisition systems manufactured by Diversified Technical Systems, Inc. (DTS) of Seal Beach, California. The SLICE-2 unit was designated as the primary system in test nos. GSH-1 and GSH-2. The acceleration sensors were mounted inside the bodies of custom-built, SLICE 6DX event data recorders and recorded data at 10,000 Hz to the onboard microprocessor. Each SLICE 6DX was configured with 7 GB of non-volatile flash memory, a range of ± 500 g's, a sample rate of 10,000 Hz, and a 1,650 Hz (CFC 1000) anti-aliasing filter. The "SLICEWare" computer software program and a customized Microsoft Excel worksheet were used to analyze and plot the accelerometer data.

3.5.2 Rate Transducers

Two identical angular rate sensor systems mounted inside the bodies of the SLICE-1 and SLICE-2 event data recorders were used to measure the rates of rotation of the test vehicle. Each SLICE MICRO Triax ARS had a range of 1,500 degrees/sec in each of the three directions (roll, pitch, and yaw) and recorded data at 10,000 Hz to the onboard microprocessors. The raw data measurements were then downloaded, converted to the proper Euler angles for analysis, and plotted. The "SLICEWare" computer software program and a customized Microsoft Excel worksheet were used to analyze and plot the angular rate sensor data.

3.5.3 Retroreflective Optic Speed Trap

The retroreflective optic speed trap was used to determine the speed of the bogie vehicle before impact. Five retroreflective targets, spaced at approximately 18-in. (457-mm) intervals, were applied to the side of the vehicle. When the emitted beam of light was reflected by the targets and returned to the Emitter/Receiver, a signal was sent to the data acquisition computer, recording at 10,000 Hz, as well as the external LED box activating the LED flashes. The speed was then calculated using the spacing between the retroreflective targets and the time between the signals. LED lights and high-speed digital video analysis are only used as a backup in the event that vehicle speeds cannot be determined from the electronic data.

3.5.4 Digital Photography

Five AOS high-speed digital video cameras, eleven GoPro digital video cameras, and two Panasonic digital video cameras were utilized to film test no. GSH-1. Five AOS high-speed digital video cameras, eleven GoPro digital video cameras, two Panasonic digital video cameras, and one SoloShot camera was utilized to film test no. GSH-2. Camera details, camera operating speeds, lens information, and a schematic of the camera locations relative to the system are shown in Figure 9 for test no. GSH-1 and Figure 10 for test no. GSH-2.

The high-speed videos were analyzed using TEMA Motion and Redlake MotionScope software programs. Actual camera speed and camera divergence factors were considered in the analysis of the high-speed videos. A digital still camera was also used to document pre- and posttest conditions for each test.

Figure 9. Camera Locations, Speeds, and Lens Settings, Test No. GSH-1

No.	Туре	Operating Speed (frames/sec)	Lens	Lens Setting
AOS-5	AOS X-PRI Gigabit	500	100 mm Fixed	
AOS-6	AOS X-PRI Gigabit	500	Cosmicar 50 mm Fixed	
AOS-7	AOS X-PRI Gigabit	500	Kowa 25 mm Fixed	
AOS-8	AOS S-VIT 1531	500	Fujinon 50 mm Fixed	
AOS-9	AOS TRI-VIT 2236	1,000	Kowa 12 mm fixed	
GP-7	GoPro Hero 4	240		
GP-8	GoPro Hero 4	240		
GP-9	GoPro Hero 4	240		
GP-10	GoPro Hero 4	120		
GP-13	GoPro Hero 4	60		
GP-14	GoPro Hero 4	240		
GP-15	GoPro Hero 4	240		
GP-16	GoPro Hero 4	240		
GP-17	GoPro Hero 4	240		
GP-18	GoPro Hero 6	120		
GP-19	GoPro Hero 6	120		
GP-19	GoPro Hero 6	120		
PAN-1	Panasonic HC-V770	120		
PAN-2	Panasonic HC-V770	120		
SOLO	SoloShot	120		

Figure 10. Camera Locations, Speeds, and Lens Settings, Test No. GSH-2

4 DESIGN DETAILS - TEST NO. GSH-1

The barrier system test installation for test no. GSH-1 consisted of a stiffened, thrie-beam section, which spanned across a 12.5-ft (3.8-m) long gap in a series of fifteen PCBs, as shown in Figures 11 through 25. Photographs of the test installation are shown in Figures 26 through 29. Material specifications, mill certifications, and certificates of conformity for the system materials are shown in Appendix B.

The PCB gap-spanning hardware was installed on the Midwest F-shape PCB system that has previously been evaluated to MASH TL-3 [9]. The system was composed of fifteen F-shape PCBs, each measuring 12 ft – 6 in. (3.8 m) long with a 5,000 psi (34.5 MPa) minimum concrete compressive strength. The barrier segments were connected by 1¹/₄-in. (32-mm) diameter ASTM A36 steel pins inserted into the ³/₄-in. (19-mm) diameter, overlapping, reinforcing loop bars extending from the ends of the PCB sections. Details of the PCB connections are shown in Figure 13. Each barrier section was placed on top of the concrete tarmac at the Midwest Roadside Safety Facility (MwRSF) Outdoor Test Site. A 12.5-ft (3.8-m) long gap was placed between barrier nos. 8 and 9, which was covered by the stiffened, thrie-beam guardrail gap-spanning hardware.

The PCB gap-spanning hardware design comprised two nested thrie-beam guardrail sections attached to the front and back sides of the PCBs adjacent to the longitudinal gap. The nested thrie-beam guardrail sections were attached to the PCBs with thrie-beam terminal connectors using wedge bolt anchors. Three steel lateral spacers were inserted between the parallel guardrail sections reduce the unsupported span length of thrie beam panels. The number of stiffeners installed between the thrie-beam guardrails could be adjusted depending on the length of the longitudinal gap. To minimize wheel snag during impacts with the system, steel toe plates were configured to span across the longitudinal gap and were anchored to the lower concrete sloped surface of the PCBs.

The stiffened, thrie-beam guardrail section of the test installation consisted of two nested 12.5-ft (3.8-m) long segments of 12-gauge (2.7-mm) thrie-beam with 10-gauge (3.4-mm) thrie-beam terminal connectors spliced together end-to-end with $\frac{5}{8}$ -in. diameter \times 2-in. long (16-mm \times 51-mm) ASTM A307 Grade A guardrail bolts. The guardrail sections with terminal connectors were anchored to both the traffic and non-traffic sides of the PCBs adjacent to the gap using five $\frac{3}{4}$ -in. diameter \times 6-in. long (19-mm \times 152-mm) Powers Fasteners galvanized wedge bolts at each end. The thrie-beam section on the traffic side of the installation was offset 5 in. (127 mm) upstream relative to the thrie-beam section on the opposite side of the barrier, as shown in Figure 13. The five thrie-beam terminal anchors could not be placed in the standard thrie beam terminal anchor locations for each end of the thrie beam panels due to interference with reinforcing steel in the PCB segments. As such, anchors were installed in alternative positions at some end terminal locations as denoted in Figures 14 and 15.

Three welded steel spacer assemblies, constructed of ¹/₄-in. (6-mm) thick ASTM A36 steel plates, were installed between the two thrie-beam rail sections, which further increased the stiffness and strength of the barrier and gap-spanning hardware, as shown in Figure 12. Additionally, a 229-in. long \times ⁵/₈-in. thick (5,817-mm \times 16-mm) ASTM A572 Grade 50 steel toe plate was bolted to the base of barrier nos. 8 and 9 on each side of the system. Each steel toe plate spanned the 12.5-ft (3.8-m) long gap and was anchored to the PCB with four ³/₄-in. diameter \times 6-in. long (19-mm \times 152-mm) Powers Fasteners galvanized wedge bolts at each toe plate end.

Figure 11. Test Installation Layout, Test No. GSH-1

Figure 12. Gap Details, Test No. GSH-1

Figure 13. Detail C and Detail D Views, Test No. GSH-1

Figure 14. Anchor Bolt Connection Details - Traffic Side, Test No. GSH-1

Figure 15. Anchor Bolts Connection Details - Non-Traffic Side, Test No. GSH-1

Figure 16. Section K-K and Section L-L Views, Test No. GSH-1

Figure 17. PCB Details, Test No. GSH-1

Figure 18. PCB Details, Section M-M and Section N-N, Test No. GSH-1

Figure 19. PCB Rebar Details, Test No. GSH-1

Figure 20. Connector Pin Details, Test No. GSH-1

Figure 21. Stiffener Assembly, Test No. GSH-1

Figure 22. Stiffener Component Details, Test No. GSH-1

Figure 23. Rail, Terminal Connector, and Toe Plate Details, Test No. GSH-1

Figure 24. Hardware, Test No. GSH-1

Item No.	QTY.	Description	Material Specification	Treatment Specification	Hardware Guide
a1	15	Portable Concrete Barrier	Min f'c = 5,000 psi [34.5 MPa]	, -	-
۵2	180	#4 [13] Rebar, 72" [1,829] Total Unbent Length	ASTM A615 Gr. 60		-
aЗ	30	#4 [13] Rebar, 146" [3,708] Total Length	ASTM A615 Gr. 60	-	-
a4	45	#5 [16] Rebar, 146" [3,708] Total Length	ASTM A615 Gr. 60	-	-
a5	90	#6 [19] Rebar, 36" [914] Total Unbent Length	ASTM A615 Gr. 60	-	-
a6	30	#6 [19] Rebar, 101" [2,565] Total Unbent Length	ASTM A709 Gr. 70 or A706 Gr. 60	-	1
۵7	30	#6 [19] Rebar, 91" [2,311] Total Unbent Length	ASTM A709 Gr. 70 or A706 Gr. 60		-
a8	30	#6 [19] Rebar, 102" [2,591] Total Unbent Length	ASTM A709 Gr. 70 or A706 Gr. 60	-	-
a9	13	1 1/4" [32] Dia., 28" [711] Long Connector Pin	ASTM A36	1 — 1	FMW02
ь1	3	31 3/4"x22 1/16"x1/4" [806x561x6] Steel Plate	ASTM A36	-	-
b2	6	30 3/4"x8"x1/4" [782x203x6] Bent Steel Plate	ASTM A36	H	-
ь3	3	24 7/16"x8"x1/4" [620x203x6] Bent Steel Plate	ASTM A36	-	-
c1	4	10-gauge [3.4] Thrie Beam Terminal Connector	AASHTO M180 Min. Yield Strength = 50 ksi [345 MPa] Min. Ultimate Strength = 70 ksi [483 MPa]	ASTM A123 or A653	RTE01b
c2	4	12'-6" [3,810] 12-gauge [2.7] Thrie Beam Section	AASHTO M180	ASTM A123 or A653	RTM04b
d1	2	229"x8 1/2"x5/8" [5,817x216x16] Steel Plate	ASTM A572 Gr. 50	ASTM A123	-
e1	36	3/4" [19] Dia., 6" [152] Long Powers Fasteners Wedge Bolt+	As Supplied	As Supplied	FBX02
e2	60	5/8"—11 UNC [M16x2], 2" [51] Long Guardrail Bolt and Nut	Bolt – ASTM A307 Gr. A Nut – ASTM A563A	ASTM A153 or B695 Class 55 or F2329	FBB02
e3	6	3/4"-10 UNC [M20x2.5], 2" [51] Long Heavy Hex Head Bolt and Nut	Bolt — ASTM F3125 Gr. A325 Type 1 or equivalent Nut — ASTM A563DH or equivalent	ASTM A153 or B695 Class 55 or F1136 Gr. 3 or F2329 or F2833 Gr. 1	FBX20b
e4	6	3/4" [19] Dia. Plain Flat Washer	ASTM F844	ASTM A123 or A153 or F2329	FWC20a
			M	PCB Gap Cover 12'-6" [3.8m] Gap Test No. GSH-1	SHEET: 15 of 15 DATE: 6/12/2018

Figure 25. Bill of Materials, Test No. GSH-1

DRAWN BY: JWB/JEK/M KB/JDJ/GRL REV. BY:

SCALE: 1:2 REV. BY: UNITS: in.[mm] JK/RF/RB/ SR/JH

Bill of Materials

GSH-1_PCBG-12.5ft_R10

DWG. NAME.

Midwest Roadside Safety Facility

Figure 26. Test Installation Photographs, Test No. GSH-1

Figure 27. Test Installation Photographs, Test No. GSH-1

Figure 28. Test Installation Photographs, Gap-Spanning Hardware Anchorage, Test No. GSH-1

Figure 29. Test Installation Photographs, Gap Stiffener Hardware, Test No. GSH-1

5 FULL-SCALE CRASH TEST NO. GSH-1 [12.5-FT (3.8-M) GAP]

5.1 Weather Conditions

Test no. GSH-1 was conducted on June 28, 2018 at approximately 11:45 a.m. The weather conditions as per the National Oceanic and Atmospheric Administration (station 14939/LNK) were reported and are shown in Table 3.

Temperature	88° F
Humidity	54 %
Wind Speed	14 mph
Wind Direction	110° from True North
Sky Conditions	Sunny
Visibility	10.0 Statute Miles
Pavement Surface	Dry
Previous 3-Day Precipitation	2.34 in.
Previous 7-Day Precipitation	2.49 in.

Table 3. Weather Conditions, Test No. GSH-1

5.2 Test Description

Test no. GSH-1 was conducted according to MASH test designation no. 3-11. Initial vehicle impact was to occur 72 in. (1,829 mm) upstream from the upstream end of barrier no. 9, as shown in Figure 30, which was selected using LS-DYNA analysis to maximize the structural loading on the hardware. The 5,005-lb (2,270-kg) Dodge quad cab pickup truck impacted the PCB gap-spanning hardware at a speed of 63.3 mph (101.9 km/h) and at an angle of 25.4 degrees. The actual point of impact was 77.1 in. (1,958 mm) upstream from barrier no. 9. The pickup truck impacted the PCB gap-spanning hardware with an impact severity of 123.2 kip-ft (167.1 kJ), which exceeded the minimum 106-kip-ft (144-kJ) limit from MASH 2016.

During the test, the 2270P vehicle was captured and redirected by the thrie beam panels of the gap-spanning hardware. At 0.095 sec after initial impact, the left-front corner of the vehicle reached upstream face of barrier no. 9 and continued to redirect without snagging on the PCB segment downstream from the gap-spanning hardware. As the vehicle continued to redirect along the system, cracking was observed through barrier no. 9 due to the loading of the segment. While this loading was sufficient the crack through the entire barrier segment, majority of the longitudinal reinforcement of the barrier segment remained intact and the continuity of the barrier was maintained. Additionally, the through cracking of the barrier segment was not observed to cause significant vehicle snag nor adversely affect vehicle stability. The impacting vehicle continued to redirect as it moved downstream along the PCB segments until exiting the barrier system at 0.894 sec after impact. The vehicle came to rest 177 ft – 7 in. (54.1 m) downstream from the initial impact point and 17 ft (5.2 m) behind the front face of the barrier system after brakes were applied.

A detailed description of the sequential impact events is contained in Table 4. Sequential photographs are shown in Figures 31 and 32. Documentary photographs of the crash test are shown in Figures 33 and 34. The vehicle trajectory and final position are shown in Figure 35.

TIME (sec)	EVENT		
0.000	Vehicle's front bumper contacted the barrier 77.1 in. (1,958 mm) upstream from		
0.000	barrier no. 9.		
0.002	Vehicle's front bumper deformed.		
0.004	Vehicle's left fender contacted rail.		
0.006	Vehicle's left-front tire contacted rail.		
0.016	Vehicle's left fender deformed.		
0.030	Vehicle yawed away from system and vehicle's left-front tire rode up toe plate of gap-spanning hardware.		
0.033	Barrier no. 9 deflected laterally.		
0.036	Barrier no. 9 cracked on back side between midspan and upstream end of barrier.		
0.050	Vehicle's left-front tire was pushed back into wheel well and barrier no. 8 rotated counterclockwise.		
0.055	Barrier no. 10 rotated counterclockwise and vehicle pitched upward.		
0.092	Barrier no. 9 fractured on back side between midspan and upstream end of barrier.		
0.093	Vehicle's front bumper contacted barrier no. 9.		
0.106	Vehicle's left-front window shattered.		
0.108	Barrier no. 9 fractured on back side upstream end.		
0.138	Vehicle's right-front tire became airborne.		
0.204	Barrier no. 9 spalled on back side between midspan and upstream end of barrier.		
0.208	Vehicle's left-front door contacted barrier no. 9.		
0.222	Vehicle's front bumper contacted barrier no. 10.		
0.258	Vehicle was parallel to system with a velocity of 47.9 mph (77.1 km/h).		
0.266	Barrier no. 9 rolled toward traffic side face of barrier system.		
0.329	Barrier no. 10 deflected backward.		
0.336	Vehicle's left quarter panel contacted barrier no. 9.		
0.354	Vehicle rolled toward system.		
0.370	Vehicle pitched downward.		
0.387	Vehicle's left-front door contacted barrier no. 10.		
0.438	Vehicle's left-rear door contacted barrier no. 10 and deformed.		
0.444	Vehicle's right-rear tire became airborne and vehicle's left-front door contacted barrier no. 11.		
0.499	9 Vehicle's left-rear door contacted barrier no. 11.		
0.646	Vehicle's right-front tire regained contact with ground.		
0.804	Vehicle's left-rear tire contacted barrier no. 12.		
0.854	Vehicle's left-rear tire regained contact with ground.		

 Table 4. Sequential Description of Impact Events, Test No. GSH-1

TIME (sec)	EVENT
0.894	Vehicle exited system at an angle of 24.7 degrees and a speed of 42.6 mph (68.6 km/h).
0.960	Vehicle's right-rear tire regained contact with ground.
1.130	System came to rest.

Table 5. Sequential Description of Impact Events, Test No. GSH-1, Cont.

Figure 30. Impact Location, Test No. GSH-1

0.894 sec

0.000 sec

0.106 sec

0.258 sec

0.646 sec

0.894 sec

1.130 sec

Figure 31. Sequential Photographs, Test No. GSH-1

1.130 sec

0.000 sec

0.140 sec

0.266 sec

0.420 sec

0.854 sec

1.130 sec

Figure 32. Additional Sequential Photographs, Test No. GSH-1

Figure 33. Documentary Photographs, Test No. GSH-1

Figure 34. Additional Documentary Photographs, Test No. GSH-1

Figure 35. Vehicle Final Position and Trajectory Marks, Test No. GSH-1

5.3 Barrier Damage

Damage to the barrier was moderate, as shown in Figures 36 through 41. Barrier damage consisted of deformation of the thrie-beam guardrail, contact marks on the front face of the thrie-beam and concrete barriers, spalling of the concrete, and concrete cracking and failure. The length of vehicle contact along the barrier was approximately 34 ft - 5 in. (10.5 m), which spanned from 10 in. (254 mm) upstream from the target impact point to the upstream end of barrier no. 11.

Tire marks were visible on the front face of the gap-spanning hardware as well as on barrier nos. 9, 10, and 11. Barrier no. 8 had minor damage. Two cracks occurred, which extended across the front, top, and rear faces of barrier no. 8 at $9\frac{1}{2}$ in. (241 mm) and 25 in. (635 mm) downstream from the midspan of the barrier.

Additional damage was noted on the gap-spanning hardware. A 10-in. long \times 2-in. tall (254-mm \times 51-mm) dent occurred 4 in. (102 mm) upstream from the target impact point on the bottom corrugation of the thrie-beam section and at 14 in. (356 mm) downstream from the target impact point on the middle corrugation of the thrie-beam section. At 18 in. (457 mm) downstream from the target impact point, the middle corrugation buckled. The lower valley bolt connecting the thrie-beam section to the internal spacer assembly located directly upstream from barrier no. 9 pulled out during the impact event, as shown in Figure 38. A 2-in. \times 2-in. (51-mm \times 51-mm) dent occurred on the middle corrugation of the thrie-beam transition 46 in. (1,168 mm) downstream from the target impact point. The front ⁵/₈-in. (16-mm) thick steel toe plate bent approximately 1¹/₂ in. (38 mm) toward the center of the system 19 in. (483 mm) downstream from the impact point target. All eight of the ³/₄-in. (19-mm) diameter wedge bolts that fastened the downstream ends of the front and rear toe plates to barrier no. 9 disengaged due to concrete fracture.

Barrier no. 9 damage included significant cracking and spalling. At 4 in. (102 mm) downstream from the upstream edge of barrier no. 9, spalling occurred, and an $8\frac{1}{2}$ -in. long \times 3-in. wide \times ¹/₄-in thick (216-mm \times 76-mm \times 6-mm) piece of concrete disengaged from the top front corner of the barrier. A crack occurred across the top of barrier no. 9 at a distance of 25 in. (635 mm) from the upstream end of the segment. Significant cracking occurred 30¹/₂ in. (775 mm) downstream from the upstream end of barrier no. 9. The cracking extended through the entire width of the barrier and led to major spalling, measuring 18 in. (457 mm) wide and 3¹/₂ in. (89 mm) deep, which caused layers of concrete to disengage from the front and rear faces of the barrier. Additionally, one of the longitudinal rebar on the backside of barrier no. 9 fractured in tension at the location of the concrete fracture, as shown in Figure 40. At 9 in. (229 mm) downstream from the upstream end of barrier no. 9, the front toe of the barrier disengaged, which extended 63 in. (1,600 mm) long and 3¹/₂ in. (89 mm) deep. A 30-in. (762-mm) long section of the rear face toe of barrier no. 9 also disengaged 13 in. (330 mm) downstream from the upstream end on the nontraffic side face. Further cracking on barrier no. 9 occurred on the front, top, and rear faces 55 in. (1,397 mm) downstream from the upstream end of the barrier. Further toe disengagement occurred on the front face of barrier no. 9, 83 in. (2,108 mm) downstream from the upstream end. The disengaged to esection was 55 in. $\log \times 9\frac{1}{2}$ in. tall \times 3 in. deep (1,397 mm \times 241 mm \times 76 mm).

On barrier no. 10, spalling occurred on the upstream front top corner of the barrier, which was $1\frac{1}{2}$ in long $\times 2$ in. wide $\times \frac{1}{4}$ in. deep (38 mm $\times 51$ mm $\times 6$ mm). Additional spalling occurred 52 in. (1,321 mm) downstream from the upstream end on the front toe of the barrier. Barrier no.

10 cracked along the front, top, and rear faces 69 in. (1,753 mm) downstream from the upstream end of the barrier.

The maximum lateral permanent set of the barrier system was 81.6 in. (2,073 mm), which occurred at the upstream end of barrier no. 9, as determined from high-speed digital video analysis. The maximum lateral dynamic barrier deflection, including tipping of the barrier along the top surface, was 81.6 in. (2,073 mm) located at the steel toe plate at the upstream end of barrier no. 9, as determined from high-speed digital video analysis. The working width of the system was found to be 99.1 in. (2,517 mm), also determined from high-speed digital video analysis. A schematic of the permanent set deflection, dynamic deflection, and working width is shown in Figure 42.

Figure 36. Overall System Damage, Test No. GSH-1

Figure 37. Overall System Damage (Non-traffic Side), Test No. GSH-1

Figure 38. Thrie-Beam Damage, Test No. GSH-1

Figure 39. Barrier No. 9 Damage, Test No. GSH-1

Figure 40. Longitudinal Rebar Shear, Non-Traffic Side, Barrier No. 9, Test No. GSH-1

Figure 41. PCB Gap-Spanning Hardware Connection Damage, Test No. GSH-1

Figure 42. Permanent Set Deflection, Dynamic Deflection, and Working Width, Test No. GSH-1

5.4 Vehicle Damage

The damage to the vehicle was moderate, as shown in Figures 43 through 45. The maximum occupant compartment intrusions are listed in Table 6, along with the intrusion limits established in MASH 2016 for various areas of the occupant compartment. Complete occupant compartment and vehicle deformations and the corresponding locations are provided in Appendix C. MASH 2016 defines intrusion or deformation as the occupant compartment being deformed and reduced in size with no observed penetration. There were no penetrations into the occupant compartment and none of the established MASH 2016 deformation limits were violated. Outward deformations, which are denoted as negative numbers in Appendix C, are not considered crush toward the occupant, and are not evaluated by MASH 2016 criteria.

The majority of damage was concentrated on the left-front corner and left side of the vehicle, where the impact had occurred. The left side of the bumper was crushed inward and backward, as shown in Figure 44. The left-front fender was dented and bent behind the left-front wheel and pushed into the left-front door. The left-front steel rim and tire disengaged from the vehicle. The left upper control arm was bent upward and inward into the engine bay and the left-side steering knuckle assembly disengaged from the vehicle. The left side of the frame and the left bumper mounting plate were both bent inward toward the center of the vehicle. The left-rear tire was deflated. The left-side headlight and fog light disengaged from the vehicle during impact. Denting and scraping were observed on the left side of the vehicle, primarily at the left-front door. The left-front and left-rear doors were slightly ajar at the top of the doorframe, and each door had a small puncture located at the base of the door. The rear bumper was twisted, and the left and right fenders due to the deformation of the hood and fenders. The left-front window shattered during the test due to contact with the test dummy's head at 106 ms after impact, but the roof and remaining window glass remained undamaged.

Figure 43. Vehicle Damage, Test No. GSH-1

Figure 44. Front-Left Vehicle Damage, Test No. GSH-1

Figure 45. Test Vehicle's Post Test Interior Floorboards and Undercarriage, Test No. GSH-1

December 17, 2020 MwRSF Report No. TRP-03-387b-20

LOCATION	MAXIMUM INTRUSION in. (mm)	MASH 2016 ALLOWABLE INTRUSION in. (mm)
Wheel Well & Toe Pan	7.2 (183)	≤ 9 (229)
Floor Pan & Transmission Tunnel	0.0 (0)	≤ 12 (305)
A-Pillar	0.5 (13)	≤ 5 (127)
A-Pillar (Lateral)	0.0 (0)	≤ 3 (76)
B-Pillar	0.5 (13)	≤ 5 (127)
B-Pillar (Lateral)	0.0 (0)	≤ 3 (76)
Side Front Panel (in Front of A-Pillar)	1.0 (25)	≤ 12 (305)
Side Door (Above Seat)	0.0 (0)	≤ 9 (229)
Side Door (Below Seat)	0.7 (18)	≤ 12 (305)
Roof	0.4 (10)	\leq 4 (102)
Windshield	0.0 (0)	≤ 3 (76)
Side Window	Shattered due to contact with dummy's head	No shattering resulting from contact with structural member of test article
Dash	0.5 (13)	N/A

Table 6. Maximum Occupant Compartment Intrusion by Location, Test No. GSH-1

N/A – No MASH 2016 criteria exist for this location

5.5 Occupant Risk

The calculated occupant impact velocities (OIVs) and maximum 0.010-sec average occupant ridedown accelerations (ORAs) in both the longitudinal and lateral directions are shown in Table 7. Note that the OIVs and ORAs were within suggested limits, as provided in MASH 2016. The calculated THIV, PHD, and ASI values are also shown in Table 7. The recorded data from the accelerometers and the rate transducers are shown graphically in Appendix D.

Evaluation Criteria		Transducer		MASH 2016	
		SLICE-1	SLICE-2 (primary)	Limits	
OIV	Longitudinal	-19.19 (-5.85)	-18.59 (-5.67)	±40 (12.2)	
ft/s (m/s)	Lateral	16.29 (4.96)	18.01 (5.49)	±40 (12.2)	
ORA	Longitudinal	15.57	15.38	±20.49	
g's	Lateral	8.59	7.14	±20.49	
Maximum	Roll	-15.8	-11.2	±75	
Angular Displacement	Pitch	-7.5	-9.0	±75	
deg.	Yaw	47.4	46.7	not required	
THIV ft/s (m/s)		24.99 (7.62)	25.70 (7.83)	not required	
PHD g's		15.85	15.51	not required	
ASI		1.03	1.08	not required	

Table 7. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. GSH-1

5.6 Discussion

The analysis of the test results for test no. GSH-1 showed that the PCB gap-spanning hardware adequately contained and redirected the 2270P vehicle with controlled lateral displacements of the barrier. A summary of the test results and sequential photographs are shown in Figure 46. Detached elements, fragments, or other debris from the test article did not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or work-zone personnel. Deformations of, or intrusions into, the occupant compartment that could have caused serious injury did not occur. The test vehicle did not penetrate nor ride over the barrier and remained upright during and after the collision. Vehicle roll, pitch, and yaw angular displacements, as shown in Appendix D, were deemed acceptable, because they did not adversely influence occupant risk nor cause rollover. After impact, the vehicle exited the barrier at an angle of 24.7 degrees, and its trajectory did not violate the bounds of the exit box. Therefore, test no. GSH-1 conducted on the PCB system gap-spanning hardware was determined to be acceptable according to the MASH 2016 safety performance criteria for test designation no. 3-11.

Figure 46. Summary of Test Results and Sequential Photographs, Test No. GSH-1

64

December 17, 2020 MwRSF Report No. TRP-03-387b-20

6 DESIGN DETAILS TEST NO. GSH-2

The barrier system test installation for test no. GSH-2 was composed of the same general barrier hardware that was in test no. GSH-1, but the longitudinal gap between barrier nos. 8 and 9 was reduced to 36 in. (914 mm) wide, as shown in Figures 47 through 61. Photographs of the test installation are shown in Figures 62 through 65. Material specifications, mill certifications, and certificates of conformity for the system materials are shown in Appendix B.

The gap-spanning hardware remained the same as used in test no. GSH-1, but the number of stiffener assemblies installed between the two nested thrie-beam sections was reduced from three in test no. GSH-1 to one in test no. GSH-2 due to the reduction in gap length. The reduced gap length also resulted in the anchors for the thrie-beam guardrail sections being mounted farther upstream on barrier no. 8 and farther downstream on barrier no. 9; since, the thrie-beam guardrail sections with terminal connectors were anchored to both the traffic and non-traffic sides of the PCBs adjacent to the gap using five 34-in. diameter × 6-in. long (19-mm × 152-mm) Powers Fasteners galvanized wedge bolts at each end. The thrie-beam section on the traffic side of the installation was again offset 5 in. (127 mm) upstream relative to the thrie-beam section on the opposite side of the barrier, as shown in Figure 49. Additionally, a 229-in. long × 5%-in. thick (5,817-mm × 16-mm) ASTM A572 Grade 50 steel toe plate was bolted to the base of barrier nos. 8 and 9 on each side of the system. Each of the steel toe plates spanned the 12.5-ft (3.8-m) long gap and were anchored to the PCB with four 34-in. diameter × 6-in. long (19-mm × 152-mm) Powers Fasteners galvanized by the system. Each of the steel toe plate spanned the 12.5-ft (3.8-m) long gap and were anchored to the pCB with four 34-in. diameter × 6-in. long (19-mm × 152-mm) Powers Fasteners galvanized wedge bolts at each toe plate spanned the 12.5-ft (3.8-m) long gap and were anchored to the pCB with four 34-in. diameter × 6-in. long (19-mm × 152-mm) Powers Fasteners galvanized wedge bolts at each toe plate end.

Figure 47. Test Installation Layout, Test No. GSH-2

Figure 48. Gap Details, Test No. GSH-2

Figure 49. Detail C and Detail D Views, Test No. GSH-2

Figure 50. Anchor Bolt Connection Details - Traffic Side, Test No. GSH-2

Figure 51. Anchor Bolt Connection Details – Non-Traffic Side, Test No. GSH-2

Figure 52. Section G-G and Section H-H Views, Test No. GSH-2

Figure 53. PCB Details, Test No. GSH-2

Figure 54. PCB Details, Section I-I and Section J-J, Test No. GSH-2

Figure 55. PCB Rebar Details, Test No. GSH-2

Figure 56. Connector Pin Details, Test No. GSH-2

Figure 57. Stiffener Assembly, Test No. GSH-2

Figure 58. Stiffener Component Details, Test No. GSH-2

TT

Figure 59. Rail, Terminal Connector, and Toe Plate Details, Test No. GSH-2

Figure 60. Hardware, Test No. GSH-2

ltem No.	QTY.	Description	Material Specification	Treatment Specification	Hardware Guide
a1	15	Portable Concrete Barrier	Min f'c = 5,000 psi [34.5 MPa]	-	-
۵2	180	#4 [13] Rebar, 72" [1,829] Total Unbent Length	ASTM A615 Gr. 60	-	
۵3	30	#4 [13] Rebar, 146" [3,708] Total Length	ASTM A615 Gr. 60	-	-
a4	45	#5 [16] Rebar, 146" [3,708] Total Length	ASTM A615 Gr. 60	-	-
a5	90	#6 [19] Rebar, 36" [914] Total Unbent Length	ASTM A615 Gr. 60	-	
a6	30	#6 [19] Rebar, 101" [2,565] Total Unbent Length	ASTM A709 Gr. 70 or A706 Gr. 60	_	-
۵7	30	#6 [19] Rebar, 91" [2,311] Total Unbent Length	ASTM A709 Gr. 70 or A706 Gr. 60	-	-
a8	30	#6 [19] Rebar, 102" [2,591] Total Unbent Length	ASTM A709 Gr. 70 or A706 Gr. 60	-	-
a9	13	1 1/4" [32] Dia., 28" [711] Long Connector Pin	ASTM A36	-	FMW02
ь1	1	31 3/4"x22 1/16"x1/4" [806x561x6] Steel Plate	ASTM A36	-	-
b2	2	30 3/4"x8"x1/4" [782x203x6] Bent Steel Plate	ASTM A36		-
b3	1	24 7/16"x8"x1/4" [620x203x6] Bent Steel Plate	ASTM A36	-	-
c1	4	10-gauge [3.4] Thrie Beam Terminal Connector	AASHTO M180 Min. Yield Strength = 50 ksi [345 MPa] Min. Ultimate Strength = 70 ksi [483 MPa]	ASTM A123 or A653	RTE01b
c2	4	12'-6" [3,810] 12-gauge [2.7] Thrie Beam Section	AASHTO M180	ASTM A123 or A653	RTM04b
d1	2	229"x8 1/2"x5/8" [5,817x216x16] Steel Plate	ASTM A572 Gr. 50	ASTM A123	-
e1	36	3/4" [19] Dia., 6" [152] Long Powers Fasteners Wedge Bolt+	As Supplied	As Supplied	FBX02
e2	52	5/8"—11 UNC [M16x2], 2" [51] Long Guardrail Bolt and Nut	Bolt – ASTM A307 Gr. A Nut – ASTM A563A	ASTM A153 or B695 Class 55 or F2329	FBB02
e3	2	3/4"—10 UNC [M20x2.5], 2" [51] Long Heavy Hex Head Bolt and Nut	Bolt — ASTM F3125 Gr. A325 Type 1 or equivalent Nut — ASTM A563DH or equivalent	ASTM A153 or B695 Class 55 or F1136 Gr. 3 or F2329 or F2833 Gr. 1	FBX20b
e4	2	3/4" [19] Dia. Plain Flat Washer	ASTM F844	ASTM A123 or A153 or F2329	FWC20a
				PCB Gap Cover 3' [0.9m] Gap Test No. GSH-2	SHEET: 15 of 15 DATE: 7/24/2018
			Midwest Roc Safety Fac	Bill of Materials Bill of Materials Bill of Materials Bill of Materials	DRAWN BY: JDJ/GRL/ JEK E: 1:8 REV. BY:

Figure 61. Bill of Materials, Test No. GSH-2

SCALE: 1:8 UNITS: in.[mm] JEK/RWB/J

GSH-2_PCBG-3ft_R4

Figure 62. Test Installation Photographs, Test No. GSH-2

Figure 63. Test Installation Photographs, Test No. GSH-2

Figure 64. Test Installation Photographs, Test No. GSH-2

7 FULL-SCALE CRASH TEST NO. GSH-2 [3-FT (0.9-M) GAP]

7.1 Weather Conditions

Test no. GSH-2 was conducted on July 27, 2018 at approximately 11:30 a.m. The weather conditions as per the National Oceanic and Atmospheric Administration (station 14939/LNK) were reported and are shown in Table 8.

Temperature	78° F
Humidity	47 %
Wind Speed	7 mph
Wind Direction	50° from True North
Sky Conditions	Cloudy
Visibility	10 Statute Miles
Pavement Surface	Dry
Previous 3-Day Precipitation	0.00 in.
Previous 7-Day Precipitation	0.00 in.

Table 8. Weather Conditions, Test No. GSH-2

7.2 Test Description

Initial vehicle impact was to occur 12 in. (305 mm) downstream from the upstream end of barrier no. 9, as shown in Figure 66, which was selected using LS-DYNA analysis to evaluate the stability of the vehicle during impact. The 5,013-lb (2274-kg) Dodge quad cab pickup truck impacted the PCB gap-spanning hardware at a speed of 61.9 mph (99.6 km/h) and at an angle of 24.9 degrees. The actual point of impact was 14.4 in. (366 mm) downstream from the upstream end of barrier no. 9. The pickup truck impacted the PCB gap-spanning hardware with an impact severity of 113.4 kip-ft (153.7 kJ), which exceeded the minimum 106 kip-ft (144-kJ) limit from MASH 2016. During the impact, the vehicle was captured and redirected by the combination of the gap-spanning hardware and the PCB segments. While some roll and pitch of the vehicle was observed, vehicle stability remained satisfactory throughout the impact event. The vehicle came to rest 176 ft – 8 in. (53.8 m) downstream from the initial impact point and 2 in. (51 mm) in front of the face on the traffic side of the barrier system after brakes were applied.

A detailed description of the sequential impact events is contained in Table 9. Sequential photographs are shown in Figures 67 and 68. Documentary photographs of the crash test are shown in Figures 69 and 70. The vehicle trajectory and final position are shown in Figure 71.

TIME (sec)	EVENT
0.000	Vehicle's front bumper contacted rail 14.4 in. (366 mm) downstream from upstream end of barrier no. 9.
0.006	Vehicle's windshield cracked, left-front tire contacted barrier no. 9, and left fender contacted rail.
0.014	Vehicle's left fender contacted barrier no. 9.
0.030	Barrier no. 9 rolled away from traffic-side face of system.
0 042	Barrier no. 8 spalled on backside, downstream end.
0.044	Barrier no. 8 rotated counterclockwise, and vehicle's front bumper reached end of thrie beam rail and contacted face of barrier no. 9.
0.056	Vehicle's left-front door contacted rail and deformed.
0.062	Barrier no. 9 cracked on back side between midspan and downstream end of barrier.
0.064	Barrier no. 7 rotated clockwise.
0.066	Barrier no. 8 spalled on backside, upstream end, and barrier no. 9 deflected backward.
0.070	Barrier no. 10 rotated clockwise, and vehicle rolled toward system.
0.078	Barrier no. 9 cracked, and portion detached from back side between midspan and downstream end of barrier.
0.094	Vehicle's right-front tire became airborne.
0.098	Vehicle pitched upward.
0.114	Barrier no. 8 deflected backward, and barrier no. 11 rotated counterclockwise.
0.120	Barrier no. 10 rolled away from traffic side of system.
0.122	Barrier no. 8 rolled toward traffic side of system.
0.126	Surrogate occupant's head crossed door threshold.
0.130	Vehicle's front bumper contacted barrier no. 10.
0.136	Vehicle's left-front tire ruptured.
0.152	Vehicle's right-rear tire became airborne.
0.160	Barrier no. 11 cracked on back side between midspan and upstream end of barrier.
0.262	Vehicle was parallel to system with velocity of 47.9 mph (77.1 km/h).
0.274	Vehicle's left-rear door contacted barrier no. 10.
0.276	Vehicle's left quarter panel contacted barrier no. 9.
0.286	Vehicle's front bumper contacted barrier no. 11.
0.334	Vehicle pitched downward.
0.342	Vehicle's left-front tire became airborne.

Table 9. Sequential Description of Impact Events, Test No. GSH-2

TIME (sec)	EVENT
0.432	Vehicle's left-rear tire became airborne.
0.442	Barrier no. 11 spalled on back side between midspan and upstream end of barrier.
0.586	Vehicle's left-front tire regained contact with ground.
0.602	Vehicle's left-rear door contacted barrier no. 12.
0.624	Vehicle's left quarter panel contacted barrier no. 12.
0.652	Vehicle exited system at an angle of 11.5 degrees at a speed of 45.9 mph (73.8 km/h).
0.662	Vehicle's front bumper contacted ground.
0.730	Vehicle yawed toward system.
1.052	Barrier system came to rest.
1.150	Vehicle pitched upward.
1.478	Vehicle's right-front tire regained contact with ground.
1.626	Vehicle's left-rear and right-rear tires regained contact with ground.
1.744	Vehicle rolled toward system.
1.762	Vehicle pitched downward.
1.838	Vehicle's right-rear tire became airborne.
2.082	Vehicle pitched upward.
2.096	Vehicle rolled away from system.
2.284	Vehicle's right-rear tire regained contact with ground.

Table 10. Sequential Description of Impact Events, Test No. GSH-2, Cont.

Figure 66. Impact Location, Test No. GSH-2

0.000 sec

0.098 sec

0.200 sec

0.278 sec

0.458 sec

0.652 sec

0.000 sec

0.042 sec

0.120

0.220 sec

0.398 sec

1.150 sec

Figure 67. Sequential Photographs, Test No. GSH-2

0.492 sec

0.964 sec

1.626 sec

2.524 sec

0.000 sec

0.072 sec

0.190 sec

0.398 sec

0.964 sec

1.626 sec

Figure 68. Additional Sequential Photographs, Test No. GSH-2

December 17, 2020 MwRSF Report No. TRP-03-387b-20

Figure 69. Documentary Photographs, Test No. GSH-2

Figure 70. Additional Documentary Photographs, Test No. GSH-2

Figure 71. Vehicle Final Position and Trajectory Marks, Test No. GSH-2

7.3 Barrier Damage

Damage to the barrier was moderate, as shown in Figures 72 through 78. Barrier damage consisted of deformation of the thrie-beam guardrail, contact marks on the front face of the thrie-beam and concrete segments, spalling of the concrete, and concrete cracking and failure. The length of vehicle contact along the barrier was approximately 24 ft – 2 in. (7.4 m), which spanned from 12 in. (305 mm) upstream from the center of the impact point target to 13 in. (330 mm) upstream from the downstream end of barrier no. 10. Secondary contact marks also occurred, which were 6 ft – 4 in. (1.9 m) in length and spanned from 57 in. (1,448 mm) upstream from the downstream end of barrier no. 12 in. (320 mm) upstream from the downstream end of barrier no. 12 in. (320 mm) upstream from the downstream end of barrier no. 12 in. (320 mm) upstream from the upstream end of barrier no. 12 in. (320 mm) upstream from the upstream from the upstream from the upstream from the upstream end of barrier no. 12 in. (320 mm) upstream from the upstream end of barrier no. 12 in. (320 mm) upstream from the upstream end of barrier no. 12 in. (320 mm) upstream from the upstream end of barrier no. 12 in. (320 mm) upstream from the upstream end of barrier no. 12 in. (320 mm) upstream from the upstream end of barrier no. 12 in. (320 mm) upstream from the upstream end of barrier no. 12 in. (320 mm) upstream from the upstream end of barrier no. 12 in. (320 mm) upstream from the upstream end of barrier no. 12 in. (320 mm) upstream from the upstream end upstream en

A 3¹/₂-in. long × 2-in. tall (89-mm × 51-mm) kink occurred on the bottom corrugation of the thrie-beam guardrail section 5 in. (127 mm) upstream from the target impact point. Two additional kinks occurred on the thrie-beam guardrail section located at the center of the target impact point on the middle and bottom corrugations. An 11-in. long × 1¹/₂-in. tall (279-mm × 38-mm) section of the thrie-beam guardrail middle corrugation flattened 2 in. (51 mm) downstream from the target impact point. At 4 in. (102 mm) downstream from the target impact point, a 5-in. long × 1¹/₂-in tall (127-mm × 38-mm) kink occurred on the bottom corrugation of the thrie-beam guardrail section. A 9¹/₂-in. long × 2¹/₂-in. tall (241-mm × 64-mm) dent was found on the middle corrugation of the thrie-beam guardrail 16 in. (406 mm) downstream from the target impact point, as shown in Figure 74. A 14-in. long × ¹/₂-in. tall (356-mm × 13-mm) kink occurred 28 in. (711 mm) downstream from the target impact point on the middle corrugation of the thrie-beam guardrail section. Additional rail flattening occurred 29 in. (737 mm) downstream from the target impact point to the middle corrugation measuring 20 in. long x 1¹/₂ in. tall (508 mm × 38 mm).

Damage to barrier no. 9 primarily consisted of cracking and spalling of the concrete. Cracking, which began at the middle of the barrier's top face and extended vertically down the rear face of the barrier to the ground, was observed 11/2 in. (38 mm) downstream from the target impact point. Toe spalling occurred from the upstream end of barrier no. 9 to 110 in. (2,794 mm) downstream. Further cracking occurred 5¹/₂ in. (140 mm) downstream from the centerline of barrier no. 9 and extended across the entire height of the rear face, the top face, and 4 in. (102 mm) down the front face below the top edge. Concrete spalling occurred 13 in. (330 mm) downstream from the centerline of barrier no. 9 and $4\frac{1}{2}$ in. (114 mm) from the top edge of the barrier. Additional cracking was found 24 in. (610 mm) downstream from the centerline of barrier no. 9, which started in the center of the top face of the barrier and extended down the entire height of the rear face of the barrier. Concrete spalling occurred 201/2 in. (521 mm) below the top edge of the barrier at 25 in. (635 mm) downstream from the centerline of barrier no. 9, and at the anchor pocket located 54 in. (1,372 mm) downstream from the centerline of barrier no. 9. At 46 in. (1,168 mm) downstream from the target impact point, a 6-in. long $\times 2^{1/4}$ -in. wide $\times ^{1/4}$ -in. deep (152-mm \times 57-mm \times 6-mm) piece of concrete disengaged from the top of barrier no. 9. Additional toe spalling occurred 39 in. (991 mm) upstream from the downstream end of barrier no. 9 on the rear face the barrier, which disengaged a 9-in. long \times 11-in. wide \times 8-in. deep (229-mm \times 279-mm \times 203-mm) piece of concrete and resulted in the pull out of the farthest downstream toe plate anchor bolt on the rear face of the barrier, as shown in Figure 75.

Concrete spalling and contact marks were found on barrier no. 10, as shown in Figure 77. Minor concrete spalling occurred 1 in. (25 mm) downstream from the upstream end of the barrier.

Additional spalling occurred near the base of the barrier 20 in. (508 mm) upstream and 58 in. (1,473 mm) downstream from the centerline of barrier no. 10. Concrete cracking occurred 23 in. (584 mm) upstream of the centerline of barrier no. 10 on both the front and rear faces of the barrier. Damage to barrier no. 11 consisted primarily of concrete spalling. A $21\frac{1}{2}$ -in. long × $7\frac{1}{2}$ -in. wide × $3\frac{1}{2}$ -in. tall (546-mm × 191-mm × 89-mm) piece of concrete disengaged from the front toe on the front face of barrier no. 11, 10 in. (254 mm) downstream from the upstream edge of the barrier. On the non-traffic side of barrier no. 11, toe pull out occurred 24 in. (610 mm) downstream from the upstream edge of the barrier at the location of the anchor pocket, as shown in Figure 78. Additional spalling was found along the top face of barrier no. 11. Minor concrete spalling was also found on the front face of the upstream end of barrier no. 12.

The maximum lateral permanent set of the barrier system was 61³/₈ in. (1,559 mm), which occurred at the upstream end of barrier no. 10, as measured in the field. The maximum lateral dynamic barrier deflection, including tipping of the barrier along the top surface, was 62.7 in. (1,593 mm) at the upstream end of barrier no. 10, as determined from high-speed digital video analysis. The working width of the system was found to be 85.2 in. (2,164 mm), also determined from high-speed digital video analysis. A schematic of the permanent set deflection, dynamic deflection, and working width is shown in Figure 79.

Figure 72. Overall System Damage, Test No. GSH-2

Figure 73. Overall System Damage (Non-traffic Side), Test No. GSH-2

Figure 74. Thrie-Beam and Barrier No. 9 Damage, Test No. GSH-2

Figure 75. Barrier No. 9 Damage, Test No. GSH-2

Figure 76. PCB Gap-Spanning Hardware Connection Damage, Test No. GSH-2

Figure 77. Barrier No. 10 Damage, Test No. GSH-2

Figure 78. Barrier No. 11 Damage, Test No. GSH-2

Figure 79. Permanent Set Deflection, Dynamic Deflection, and Working Width, Test No. GSH-2

7.4 Vehicle Damage

The damage to the vehicle was moderate, as shown in Figures 80 through 83. The maximum occupant compartment deformations are listed in Table 11 along with the deformation limits established in MASH 2016 for various areas of the occupant compartment. Complete occupant compartment and vehicle deformations and the corresponding locations are provided in Appendix C. MASH 2016 defines intrusion or deformation as the occupant compartment being deformed and reduced in size with no observed penetration. There were no penetrations into the occupant compartment and none of the established MASH 2016 deformation limits were violated. Outward deformations, which are denoted as negative numbers in Appendix C, are not considered crush toward the occupant, and are not evaluated by MASH 2016 criteria.

Majority of damage was concentrated on the left-front corner and left side of the vehicle, where the impact had occurred. The front bumper fractured at the lower-left corner of the grille and the entire front bumper disengaged from the vehicle. The left-front fender was pushed upward near the door panel and was dented and torn behind the left-front wheel. The left-front steel rim was severely deformed with tears and significant crushing, as shown in Figure 82. The sway/anti-roll bar disengaged from the lower control arm on the front left side of the vehicle. The lower-left control arm disengaged and fractured into three pieces. The left-side tie rod fractured at the steering knuckle joint and disengaged. The rear engine cross member buckled downward, and the frame buckled inward in front of the rear transmission mount on the left side of the vehicle. The engine and transmission shifted due to the fracture of two of the four engine mount bolts on the left side of the vehicle. The engine and transmission shifted due to the fracture of two of the four engine mount bolts on the left side of the vehicle. The left side of the vehicle.

The left-side headlight and fog light were removed from the vehicle. Denting and scraping were observed on the entire left side of the vehicle with majority of the damage located at the left-front and left-rear doors, as shown in Figure 81. The left-front door was ajar at the top of the door frame, and creases were found in the sheet metal on both the left-front and left-rear doors. The left-rear steel rim was crushed, and a puncture and scuff marks were found on the tire. The left side of the rear bumper was dented and scuffed below the left taillight. A gap occurred between the hood and both the left and right fenders due to deformation from impact. The roof was undamaged following the test, and the side windows remained intact. The windshield was cracked prior to the test, and further cracking was observed on the left side of the windshield following the test.

Figure 80. Vehicle Damage, Test No. GSH-2

Figure 81. Left-Side Vehicle Damage, Test No. GSH-2

Figure 82. Front-Left Vehicle Damage, Test No. GSH-2

Figure 83. Test Vehicle's Post-Test Interior Floorboards and Undercarriage, Test No. GSH-2

LOCATION	MAXIMUM INTRUSION in. (mm)	MASH 2016 ALLOWABLE INTRUSION in. (mm)
Wheel Well & Toe Pan	2.9 (74)	≤ 9 (229)
Floor Pan & Transmission Tunnel	0.5 (13)	≤ 12 (305)
A-Pillar	0.1 (3)	≤ 5 (127)
A-Pillar (Lateral)	0.0 (0)	<i>≤</i> 3 (76)
B-Pillar	0.3 (8)	≤ 5 (127)
B-Pillar (Lateral)	0.0 (0)	<i>≤</i> 3 (76)
Side Front Panel (in Front of A-Pillar)	0.7 (18)	≤ 12 (305)
Side Door (Above Seat)	0.0 (0)	≤ 9 (229)
Side Door (Below Seat)	0.0 (0)	≤ 12 (305)
Roof	0.1 (3)	≤ 4 (102)
Windshield	0.0 (0)	<i>≤</i> 3 (76)
Side Window	Intact	No shattering resulting from contact with structural member of test article
Dash	0.8 (20)	N/A

Table 11. Maximum Occupant Compartment Intrusion by Location, Test No. GSH-2

N/A – No MASH 2016 criteria exist for this location

7.5 Occupant Risk

The calculated occupant impact velocities (OIVs) and maximum 0.010-sec average occupant ridedown accelerations (ORAs) in both the longitudinal and lateral directions are shown in Table 12. Note that the OIVs and ORAs were within suggested limits, as provided in MASH 2016. The calculated THIV, PHD, and ASI values are also shown in Table 12. The recorded data from the accelerometers and the rate transducers are shown graphically in Appendix E.

		Trans	ducer	MASH 2016
Evaluatio	on Criteria	SLICE-1	SLICE-2 (primary)	Limits
OIV	Longitudinal	-16.68 (-5.08)	-16.09 (-4.91)	±40 (12.2)
ft/s (m/s)	Lateral	17.13 (5.22)	18.79 (5.73)	±40 (12.2)
ORA	Longitudinal	-4.21	-4.22	±20.49
g's	Lateral	11.71	9.41	±20.49
Maximum	Roll	-44.6	-40.2	±75
Angular Displacement	Pitch	-16.8	-18.8	±75
deg.	Yaw	46.7	44.3	not required
TI ft/s	HIV (m/s)	24.03 (7.33)	25.76 (7.85)	not required
Pl	HD g's	11.80	9.54	not required
А	SI	1.27	1.36	not required

Table 12. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. GSH-2

7.6 Discussion

The analysis of the test results for test no. GSH-2 showed that the system adequately contained and redirected the 2270P vehicle with controlled lateral displacements of the barrier. A summary of the test results and sequential photographs are shown in Figure 84. Detached elements, fragments, or other debris from the test article did not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or work-zone personnel. Deformations of, or intrusions into, the occupant compartment that could have caused serious injury did not occur. The test vehicle did not penetrate nor ride over the barrier and remained upright during and after the collision. Vehicle roll, pitch, and yaw angular displacements, as shown in Appendix E, were deemed acceptable, because they did not adversely influence occupant risk nor cause rollover. After impact, the vehicle exited the barrier at an angle of 4.2 degrees, and its trajectory did not violate the bounds of the exit box. Therefore, test no. GSH-2 was determined to be acceptable according to the MASH 2016 safety performance criteria for test designation no. 3-11.

Figure 84. Summary of Test Results and Sequential Photographs, Test No. GSH-2

December 17, 2020 MwRSF Report No. TRP-03-387b-20

8 SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

8.1 Summary and Conclusions

In order to evaluate the performance of the stiffened, thrie-beam, gap-spanning hardware, two full-scale crash tests, test no. GSH-1 and test no. GSH-2, were conducted on a fifteen-barrier long PCB system with gap-spanning hardware placed across barrier nos. 8 and 9. The two full-scale crash tests were performed according to the TL-3 safety performance criteria defined in MASH 2016 for test designation no. 3-11. A summary of the test evaluation for both tests is provided in Table 13.

Analysis of the barrier system with the largest possible barrier gap of 12.5 ft (0.91 m) identified that the structural loading of the PCB gap-spanning hardware was the greatest when the system was impacted 72 in. (1,829 mm) upstream from the first PCB segment on the downstream end of the gap-spanning hardware. Test no. GSH-1 was conducted to evaluate the maximum structural loading of the gap-spanning hardware at this impact point. In test no. GSH-1, the 5,005-lb (2,270-kg) pickup truck impacted the PCB system with gap-spanning hardware at a speed of 63.3 mph (101.9 km/h) and at an angle of 25.4 degrees, resulting in an impact severity of 123.2 kip-ft (167.1 kJ). After impacting the PCB system with gap-spanning hardware, the vehicle exited the system at a speed of 42.6 mph (68.6 km/h) and an angle of 24.7 degrees. The vehicle was successfully contained and redirected with moderate damage to both the vehicle and the barrier system. All vehicle decelerations and occupant compartment deformations fell within the recommended safety limits established in MASH 2016. Therefore, test no. GSH-1 was successful according to the safety criteria of MASH 2016 test designation no. 3-11.

Analysis of the barrier system with a small barrier gap of 3 ft (3.81 m) identified the potential for the front wheel and tire of the 2270P vehicle to be held down by the thrie beam rail element spanning the PCB gap when the hardware was impacted in a region where it overlapped the adjacent PCB segments. This behavior tended to induce significant roll motions in the 2270P vehicle which raised concerns for potential vehicle instability. As such, a second CIP was selected 12 in. (305 mm) downstream from the upstream end of the first PCB segment on the downstream end of the gap-spanning hardware. Test no. GSH-2 was conducted to evaluate potential vehicle instability at this impact point. In test no. GSH-2, the 5,013-lb (2,274-kg) quad cab pickup truck impacted the transition from the gap-spanning hardware to the PCBs at a speed of 61.9 mph (99.6 km/h) and at an angle of 24.9 degrees, resulting in an impact severity of 113.4 kip-ft (153.7 kJ). After impacting the transition from the gap-spanning hardware to the PCBs, the vehicle exited the system at a speed of 37.9 mph (61.0 km/h) and an angle of 4.2 degrees. The vehicle was successfully contained and redirected with moderate damage to both the vehicle and the barrier system. All vehicle decelerations and occupant compartment deformations fell within the recommended safety limits established in MASH 2016. Therefore, test no. GSH-2 was successful according to the safety criteria of MASH 2016 test designation no. 3-11.

Based on the two successful full-scale crash testing at two critical impact points, the PCB gap-spanning hardware system detailed herein meets all the safety requirements for MASH 2016 TL-3.

Evaluation Factors		Evalua	tion Criteria		Test No. GSH-1	Test No. GSH-2
Structural Adequacy	A.	Test article should contain vehicle to a controlled sto underride, or override the deflection of the test article	and redirect the v op; the vehicle sho installation althoug is acceptable.	ehicle or bring the buld not penetrate, h controlled lateral	S	S
	D.	1. Detached elements, frag article should not penetrate occupant compartment, or p pedestrians, or personnel in	gments or other de or show potential resent an undue haz a work zone.	ebris from the test for penetrating the zard to other traffic,	S	S
		2. Deformations of or intrushould not exceed limits set of MASH 2016.	sions into, the occursion forth in Section 5.2	upant compartment 2.2 and Appendix E	S	S
	F.	The vehicle should remain maximum roll and pitch ang	upright during and gles are not to excee	after collision. The ed 75 degrees.	S	S
Occupant Risk	H.	Occupant Impact Velocity (of MASH 2016 for calcu following limits:	OIV) (see Appendix llation procedure)	x A, Section A5.2.2 should satisfy the		
		Occupant	Impact Velocity Lir	nits	S	S
		Component	Preferred	Maximum		
		Longitudinal and Lateral	30 ft/s (9.1 m/s)	40 ft/s (12.2 m/s)		
	I.	The Occupant Ridedown A Section A5.2.2 of MASH 2 satisfy the following limits:	Acceleration (ORA) 2016 for calculation	(see Appendix A, procedure) should		
		Occupant Ride	edown Acceleration	Limits	S	S
		Component	Preferred	Maximum		
		Longitudinal and Lateral	15.0 g's	20.49 g's		
		MASH 2016 Test De	signation No.		3-11	3-11
		Final Evaluation (P	ass or Fail)		Pass	Pass

Table 13. Summary of Safety Performance Evaluation

S – Satisfactory U – Unsatisfactory NA - Not Applicable

8.2 Recommendations

The MASH 2016 TL-3 PCB gap-spanning hardware system detailed herein was evaluated using full-scale crash testing at two critical impact points and with two different gap widths. Realworld installations will require spanning a range of gaps from the maximum tested length of 12.5 ft (3.81 m) to lengths as short as 6 in. (152 mm). Application of the barrier to these varied installation widths requires implementation guidance. Additionally, there are other considerations for the implementation of the barrier system that fall outside the as-tested design. Implementation guidance for the PCB gap spanning hardware is discussed in the subsequent sections.

8.2.1 Gap Lengths and Rail Spacers

As noted previously, longitudinal gaps for the PCB gap spanning hardware may vary between 12.5 ft (3.81 m) to lengths as small as 6 in. (152 mm). Installation of the gap-spanning hardware over variable gap lengths must follow basic guidance to allow for proper installation of the spacers and positioning of the hardware across the longitudinal gap. This guidance is outlined below and summarized in Table 14. In the table, gap-spanning hardware position refers to the thrie beam rail, toe plate, and associated spacers. The rail and toe plate remain in the same positions relative to the spacers regardless of the gap size. Similarly, the spacers are only included or removed based on gap length. The position is defined as the midspan of the assembled hardware relative to the center of the gap between adjacent PCBs.

- 1. For a longitudinal gap length of 0 ft $< x \le 1$ ft (0 mm $< x \le 305$ mm), no rail spacer is required, as shown in Figure 85.
- 2. For a longitudinal gap length of 1 ft $< x \le 4$ ft (305 mm $< x \le 1,219$ mm), the gap spanning hardware should be centered over the gap and one rail spacer should be installed, as shown in Figure 86.
- 3. For a longitudinal gap length of 4 ft $< x \le 7$ ft (1,219 mm $< x \le 2,134$ mm), the gap spanning hardware should be offset 18³/4 in. (476 mm) upstream or downstream from the midspan of the longitudinal gap and two rail spacers should be installed. The offset of the gap spanning hardware will allow the two rail spacers to be centered and spaced evenly within the gap, as shown in Figure 87.
- 4. For a longitudinal gap length of 7 ft $< x \le 12.5$ ft (2,134 mm $< x \le 3,810$ mm), the gap spanning hardware should be centered over the gap and three rail spacers should be installed, as shown in Figure 88.

Longitudinal Gap Length (ft) [mm]	No. of Rail Spacers	Gap-Spanning Hardware Position
4" ft < x \le 1 ft [0 mm < x \le 305 mm]	0	Centered
$1 \text{ ft} < x \le 4 \text{ ft}$ [305 mm < x \le 1,219 mm]	1	Centered
$\begin{array}{c} 4 \ ft < x \leq 7 \ ft \\ [1,219 \ mm < x \leq 2,134 \ mm] \end{array}$	2	Offset 18¾ in. [476 mm]
7 ft < x \le 12.5 ft [2,134 mm < x \le 3,810 mm]	3	Centered

Table 14. PCB Gap Spanning Hardware Position and Rail Spacer Recommendations for Variable Gap Lengths

Figure 85. PCB Gap-Spanning Hardware Schematic, Gap Length = 0 ft < x ≤ 1 ft

Figure 86. PCB Gap-Spanning Hardware Schematic, Gap Length = 1 ft < $x \le 4$ ft

Figure 87. PCB Gap-Spanning Hardware Schematic, Gap Length = 4 ft $< x \le 7$ ft

Figure 88. PCB Gap-Spanning Hardware Schematic, Gap Length = 7 ft $< x \le 12.5$ ft

8.2.2 Thrie Beam Anchoring

The PCB gap-spanning hardware requires anchoring of the thrie beam rail segments on the front and back of the system to the face of the adjacent PCBs with thrie beam terminal connectors and mechanical anchors. To provide proper anchorage and account for potential interference with reinforcing steel within the barrier when accommodating variable gaps, guidance is provided for the installation of the anchors to ensure proper anchorage capacity and function.

- 1. For all installations, the thrie beam rail segments on the front and back of the system must be offset 5 in. (127 mm) longitudinally to prevent interference between the anchor hardware from opposing sides of the system.
- 2. A minimum of five anchor bolts (part e1) must connect the thrie beam terminal connectors on each end of the rail segments to the adjacent PCB segments. The default installation is to install three anchors in the upper, lower, and middle locations of the outer, vertical row of anchor holes in the terminal connectors and two anchors in the innermost vertical row of anchor holes in the terminal connector, similar to a standard thrie beam terminal connection for approach guardrail transitions.
- 3. A minimum of three anchors should be installed in the outer vertical row of the thrie beam terminal connector. If vertical steel is encountered during installation that prevents proper installation of these anchors, installers should shift the gap-spanning hardware installation 2 in. (51 mm) upstream or downstream, as needed.
- 4. The remaining two anchor bolts should be installed in intermediate holes in the thrie beam terminal connector. These anchors should be installed a minimum distance of 6 in. (152 mm) from the end of the PCB segment.
- 5. All anchors should be placed a minimum distance of 3 in. (76 mm) from lifting holes or other voids in the barrier.

Examples of these thrie beam anchorage recommendations can be seen in the CAD details for the as-tested barrier systems in this report.

8.2.3 Toe Plate Anchoring

Similarly, the steel toe plate on the lower section of the PCB gap-spanning hardware must be anchored to the PCB segments on each end of the longitudinal barrier gap. However, as the gap width varies, the anchors may not be able to be installed due to interference with reinforcing steel, anchor bolt pockets, and proximity to the end of the barrier segment. The following recommendations are provided for anchoring the toe plate to the adjacent PCB segments.

- 1. A minimum of four anchors are required on each end of the plate to anchor to the adjacent PCB segments.
- 2. Anchors may not be placed within 6 in. (152 mm) of the center of an anchor bolt pocket in the PCB or within 4 in. (102 mm) of drainage slots or other edges.

- 3. One anchor must be placed in the first hole located at a minimum of 6 in. (152 mm) away from the end of the PCB segment. If reinforcing steel in the barrier prevents installation of an anchor in the anchor location nearest to the end of the PCB segment, a field-drilled anchor hole can be drilled in the anchor plate a minimum of 3 in. (76 mm) longitudinally from existing holes in the toe plate to accommodate this anchor placement. Note that the field-drilled hole should be spray galvanized to limit potential corrosion.
- 4. One anchor must be placed in the final anchor hole at the end of each toe plate. If reinforcing steel or other feature of the barrier segment prevents installation of an anchor in the anchor location nearest to the end of the PCB segment, then the next closest hole to the end of the toe plate should be used. Alternatively, the toe plate may be shifted upstream or downstream to allow proper anchor installation, while making sure that the intermediate holes in the toe plate still allow for attachment to the rail spacers.
- 5. The remaining two anchors should be spaced as evenly as possible along the toe plate

Examples of these toe plate anchorage recommendations can be seen in the CAD details for the as-tested barrier systems in this report.

8.2.4 Minimum System Length

The PCB gap-spanning hardware system tested herein was evaluated with eight barrier segments upstream and downstream from the longitudinal barrier gap. PCB systems redirect errant vehicles through a combination of various forces and mechanisms, including inertial resistance developed by the acceleration of several barrier segments, lateral friction loads, and the tensile loads developed from the mass and friction of the barrier segments upstream and downstream from the impacted region. As such, the number of barriers upstream and downstream from the longitudinal barrier gap will affect performance of the PCB gap-spanning hardware system, and reduced numbers of PCB segments adjacent to the gap may degrade barrier performance. It is recommended that a minimum of eight barrier segments be installed both upstream and downstream from any longitudinal barrier gap to ensure that the safety performance of the barrier is retained similar to the as-tested system.

8.2.5 Other Barrier Types

The PCB gap spanning hardware system described herein was designed for use with the Midwest F-shape PCB system. Therefore, it should not be used with other PCB systems or joint designs without further study. Although this gap spanning hardware system may potentially be adapted to other approved temporary concrete barrier systems, it would be necessary to consider several factors, such as barrier connections, segment lengths, reinforcement, and geometry.

9 MASH EVALUATION

A design for spanning longitudinal gaps in an F-shape PCB system was evaluated to determine its compliance with MASH 2016 TL-3 evaluation criteria. The PCB gap-spanning hardware design comprised two nested thrie-beam guardrail sections attached to the front and back sides of the PCBs adjacent to the longitudinal gap. The nested thrie-beam guardrail sections were attached to the PCBs with thrie-beam terminal connectors using wedge bolt anchors. Three steel lateral spacers were inserted between the parallel guardrail sections reduce the unsupported span length of thrie beam panels. The number of stiffeners installed between the thrie-beam guardrails could be adjusted depending on the length of the longitudinal gap. To minimize wheel snag during impacts with the system, steel toe plates were configured to span across the longitudinal gap and were anchored to the lower sloped concrete surface of the PCBs.

9.1.1 Test Matrix

The PCB gap spanning hardware evaluated in this report functions primarily as a longitudinal barrier. According to TL-3 of MASH 2016, longitudinal barrier systems and their transitions must be subjected to two full-scale vehicle crash tests, as summarized in Table 15.

		Test		Vehicle	Impact C	onditions	
Test Article	Barrier Section	Designation No.	Test Vehicle	Weight, lb (kg)	Speed, mph (km/h)	Angle, degrees	Evaluation Criteria ¹
Longitudinal	Length-	3-10	1100C	2,425 (1,100)	62 (100.0)	25	A,D,F,H,I
Barrier	of-Need	3-11	2270P	5,000 (2,270)	62 (100)	25	A,D,F,H,I

Table 15. MASH 2016 TL-3 Crash Test Conditions for Longitudinal Barriers

¹ Evaluation criteria explained in Table 2.

It should be noted that the MASH 2016 test matrix detailed herein represents the recommended crash tests that should be performed. However, some of these crash tests may be deemed non-critical and unnecessary. For the PCB gap spanning hardware system evaluated herein, the 1100C vehicle test, test designation no. 3-10, was deemed non-critical for evaluation of the barrier system. Previous testing of PCBs and safety shape barriers has indicated that small cars interact in a safe manner with this type of roadside hardware. In test no. 2214NJ-1, a MASH test designation no. 3-10 full-scale crash test was successfully conducted on a permanent New Jersey shape concrete parapet under NCHRP Project 22-14(2) [4]. In Texas A&M Transportation Institute (TTI) test report no. 607911-1&2, a MASH test designation no. 3-10 full-scale crash test was successfully conducted on a free-standing F-shape PCB similar to the barrier used in this study [5]. These two tests indicate that safety shape barriers are capable of successfully capturing and redirecting a 1100C vehicle in both free-standing PCB and permanent concrete parapet applications. Additionally, the increased toe height of New Jersey shape barriers tends to produce increased vehicle climb and instability as compared to the F-shape geometry. Thus, one would expect that the PCB gap-spanning hardware with similar geometry evaluated in this study would

perform similarly to these previous MASH 1100C vehicle tests in terms of capture and redirection, and the 1100C vehicle would not be critical for structural loading of the hardware. As such, it was believed that test designation no. 3-10 with the 1100C vehicle would be non-critical for evaluation of the tie-down anchorages for use with F-shape PCBs. MASH 2016 test designation no. 3-11 was the more critical evaluation test due to concerns for increased barrier loading during 2270P impacts and to determine dynamic deflection and working width. Thus, only test designation no. 3-11 was conducted on the PCB gap-spanning hardware evaluated herein. It should be noted that any tests deemed non-critical and unnecessary may eventually need to be performed if additional knowledge gained over time or revisions to the MASH 2016 criteria demonstrates a concern or need.

During the development of the PCB gap-spanning hardware in Phase I, an analysis was performed on the critical impact points (CIPs) for the system. This analysis found that there were two CIPs for the PCB gap-spanning hardware. One CIP was chosen to maximize structural loading of the barrier system, and a second was selected to maximize the potential for vehicle instability. Note that snag of impacting vehicles was considered and evaluated in the CIP analysis. However, the analysis demonstrated that vehicle snag was not a critical behavior due the use of the thrie beam rail and toe plate elements that connect the system to the PCB segments, and any vehicle snag that was observed in the simulation analysis of potential CIPs was less of a concern than the structural loading and vehicle stability CIPs that were identified. Full details on the CIP analysis are provided in the Phase I report [1]. The two identified CIPs were as follows:

- 1. Analysis of the barrier system with the largest possible barrier gap of 12.5 ft (3.81 m) identified that the structural loading of the PCB gap-spanning hardware was the greatest when the system was impacted 72 in. (1,829 mm) upstream from the first PCB segment on the downstream end of the gap-spanning hardware.
- 2. Analysis of the barrier system with a small barrier gap of 3 ft (0.91 m) identified the potential for the 2270P vehicle's front wheel and tire to be held down by the thrie beam rail element spanning the PCB gap when the hardware was impacted where it overlapped the adjacent PCB segments. This behavior tended to induce significant roll motions in the 2270P vehicle, which raised concerns for potential vehicle instability. As such, a second CIP was selected to be 12 in. (305 mm) downstream from the upstream end of the first PCB segment on the downstream end of the gap-spanning hardware.

Based on this CIP analysis, two full-scale crash tests were conducted under MASH test designation no. 3-11 impact conditions. The first test was conducted to evaluate the maximum structural loading of the PCB gap-spanning hardware, and the second test was conducted to evaluate potential vehicle instability.

9.1.2 Full-Scale Crash Test Results

The results of the MASH TL-3 full-scale crash testing of the PCB Gap spanning hardware system are summarized below. A summary of the full-scale crash testing is provided in Table 16.

1. Test no. GSH-1 – Test no. GSH-1 was conducted to evaluate the maximum structural loading of the gap-spanning hardware at a critical impact point. In test no. GSH-1, the 5,005-lb (2,270-kg) quad cab pickup truck impacted the PCB system with gap-spanning hardware at a speed of 63.3 mph (101.9 km/h) and at an angle of 25.4 degrees, resulting in

an impact severity of 123.2 kip-ft (167.1 kJ). After impacting the PCB system with gapspanning hardware, the vehicle exited the system at a speed of 42.6 mph (68.6 km/h) and an angle of 24.7 degrees. The vehicle was successfully contained and redirected with moderate damage to both the vehicle and the barrier system. All vehicle decelerations and occupant compartment deformations fell within the recommended safety limits established in MASH 2016. Therefore, test no. GSH-1 was successful according to the safety criteria of MASH 2016 test designation no. 3-11.

2. Test no. GSH-2 - Test no. GSH-2 was conducted to evaluate potential vehicle instability at a critical impact point. In test no. GSH-2 the 5,013-lb (2,274-kg) quad cab pickup truck impacted the transition from the gap-spanning hardware to the PCBs at a speed of 61.9 mph (99.6 km/h) and at an angle of 24.9 degrees, resulting in an impact severity of 113.4 kip-ft (153.7 kJ). After impacting the transition from the gap-spanning hardware to the PCBs, the vehicle exited the system at a speed of 37.9 mph (61.0 km/h) and an angle of 4.2 degrees. The vehicle was successfully contained and redirected with moderate damage to both the vehicle and the barrier system. All vehicle decelerations and occupant compartment deformations fell within the recommended safety limits established in MASH 2016. Therefore, test no. GSH-2 was successful according to the safety criteria of MASH 2016 test designation no. 3-11.

MwRSF Test No.	MASH Test Designation	MwRSF Report No.	Date of Test	Pass/Fail	System Version
GSH-1	3-11	TRP-03-387b-20	06/28/18	Pass	12.5 ft (3.81 m) Gap
GSH-2	3-11	TRP-03-387b-20	07/27/18	Pass	3 ft (0.91 m) Gap

Table 16. MASH 2016 TL-3 Crash Test Summary for PCB Gap-Spanning Hardware

9.1.3 MASH 2016 Evaluation

Based on the two successful full-scale crash testing at two critical impact points, the PCB gap-spanning hardware system detailed herein meets the safety requirements for MASH 2016 TL-3.

10 REFERENCES

- 1. Ranjha, S.A., Bielenberg, R.W., Rosenbaugh, S.K., and Faller, R.K., *Development of a PCB Steel Cover Plate for Large Open Joints Phase I*, Report No. TRP-03-387a-20, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, Draft Report.
- 2. *Manual for Assessing Safety Hardware (MASH), Second Edition*, American Association of State Highway and Transportation Officials (AASHTO), Washington, D.C., 2016.
- 3. *Manual for Assessing Safety Hardware (MASH)*, American Association of State Highway and Transportation Officials (AASHTO), Washington, D.C., 2009.
- 4. Polivka, K.A., Faller, R.K., Sicking, D.L., Rohde, J.R., Bielenberg, R.W., Reid, J.D., and Coon, B.A., *Performance Evaluation of the Permanent New Jersey Safety Shape Barrier Update to NCHRP 350 Test No. 3-10 (2214NJ-1)*, Report No. TRP-03-177-06, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, October 13, 2006.
- 5. Sheikh, N.M., Menges, W.L., Kuhn, D.L., *MASH TL-3 Testing and Evaluation of Free-Standing Portable Concrete Barrier*, Test Report No. 607911-1&2, Texas A&M Transportation Institute, Texas A&M University, College Station, Texas, May 2017.
- 6. Hinch, J., Yang, T.L., and Owings, R., *Guidance Systems for Vehicle Testing*, ENSCO, Inc., Springfield, Virginia, 1986.
- 7. *Center of Gravity Test Code SAE J874 March 1981,* SAE Handbook Vol. 4, Society of Automotive Engineers, Inc., Warrendale, Pennsylvania, 1986.
- 8. Society of Automotive Engineers (SAE), *Instrumentation for Impact Test Part 1 Electronic Instrumentation*, SAE J211/1 MAR95, New York City, NY, July, 2007.
- Polivka, K.A., Faller, R.K., Sicking, D.L., Rohde, J.R., Bielenberg, R.W., Reid, J.D., and Coon, B.A., *Performance Evaluation of the Free-Standing Temporary Barrier – Update to NCHRP 350 Test No. 3-11 with 28" C.G. Height (2214TB-2)*, Report No. TRP-03-174-06, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, October 2006.
- 10. *Vehicle Damage Scale for Traffic Investigators*, Second Edition, Technical Bulletin No. 1, Traffic Accident Data (TAD) Project, National Safety Council, Chicago, Illinois, 1971.
- Collision Deformation Classification Recommended Practice J224 March 1980, Handbook Volume 4, Society of Automotive Engineers (SAE), Warrendale, Pennsylvania, 1985.

11 APPENDICES

Appendix A. Vehicle Center of Gravity Determination

Date	: 6/28/2018	_ Test Name: _	GSH-1	VIN:	1D7R	B1GP6BS5	53873
Year	: 2011	Make:	Dodge	Model:	Ram	n 1500 Quad	d Cab
Vehicle CG	Determinati	on					
	F acility and			Weight	Vertical CG	Vertical M	
VEHICLE	Equipment			(ID.)	(In.)	(IDIN.)	7
+	Unballasted	J Truck (Curb)		4984	28.558751	142336.81	4
+		ation aulindar 9	frame	19	15	200	4
+	Brake activ	ation cylinder &	Irame	0	29 3/6	235	-
+	Strobo/Brol	tank (Nitrogen)		50	20	120	-
т 	Broke Book			6	51 1/9	206.75	-
+	CC Plate in			42	31 1/0	1222	-
т.	Bottony			42	<u> </u>	1002.25	-
				-40	41 3/0	-1903.23	4
-				-9	50 1/4	3010.5	4
-	Fuel			_170	17	-2800	-
-	Coolant			-170	36	-2090	-
	Washer flui	d		-10	38 1/4	-38.25	-
+	Water Balls	u est (In Fuel Tank	()	137	16	2192	-
+	Onboard Si	unnlemental Bat	terv	13	25 1/2	331.5	-
+	Smart Barri	ier Provisions	licity	9	24 5	220.5	-
		10111011310113			24.0	1420.00	-
+	Spare Tire			65	22 1/8	1 1438 125	
+ Note: (+) is adde	Spare Tire ed equipment to	vehicle, (-) is remov Estimated Tota Vertical CG I	ved equipment fi I Weight (Ib.) Location (in.)	65 rom vehicle 5004 28.0387	22 1/8	1438.125)
+ Note: (+) is adde Vehicle Dim	Spare Tire ed equipment to ensions for	vehicle, (-) is remov Estimated Tota Vertical CG I C.G. Calculatio	ved equipment fi I Weight (Ib.) Location (in.)	65 rom vehicle 5004 28.0387	22 1/8	140305.69	5
+ Note: (+) is adde <u>Vehicle Dim</u> Wheel Base	Spare Tire ed equipment to ensions for 140.5	vehicle, (-) is remov Estimated Tota Vertical CG I <u>C.G. Calculatio</u> _in.	ved equipment f I Weight (Ib.) Location (in.) ons Front Tr	65 rom vehicle 5004 28.0387 ack Width:	67.625	1438.125 140305.69	-
+ Note: (+) is adde Vehicle Dim Wheel Base	Spare Tire ed equipment to ensions for 140.5	vehicle, (-) is remov Estimated Tota Vertical CG I <u>C.G. Calculatio</u> _in.	ved equipment f I Weight (Ib.) Location (in.) o ns Front Tr Rear Tr	65 rom vehicle 5004 28.0387 ack Width: ack Width:	22 1/8 67.625 67.625	1438.125 140305.69 in.	-
+ Note: (+) is adde Vehicle Dim Wheel Base	Spare Tire ed equipment to ensions for 140.5	vehicle, (-) is remov Estimated Tota Vertical CG I C.G. Calculatio _in. 2270P MAS	ved equipment f I Weight (Ib.) Location (in.) ons Front Tr Rear Tr H Targets	65 rom vehicle 5004 28.0387 ack Width: ack Width:	22 1/8 67.625 67.625 Test Inertia	1438.125 140305.69 in. in.	Differenc
+ Note: (+) is adde Vehicle Dim Wheel Base Center of Gr Test Inertial N	Spare Tire ed equipment to ensions for : 140.5	vehicle, (-) is remov Estimated Tota Vertical CG I C.G. Calculatio _in. 	ved equipment f I Weight (Ib.) Location (in.) ons Front Tr Rear Tr Rear Tr H Targets ± 110	65 rom vehicle 5004 28.0387 ack Width: ack Width:	<u>67.625</u> 67.625 Test Inertia 5005	1438.125 140305.69 in. in.	Differenc 5.
+ Note: (+) is adde Vehicle Dim Wheel Base Center of Gr Test Inertial V Longitudinal	Spare Tire ed equipment to ensions for : 140.5 ravity Weight (lb.) CG (in.)	vehicle, (-) is remov Estimated Tota Vertical CG I C.G. Calculatio in. 2270P MAS 5000 ± 63 ±	ved equipment f I Weight (Ib.) Location (in.) ons Front Tr Rear Tr Rear Tr H Targets t 110 t 4	65 rom vehicle 5004 28.0387 ack Width: ack Width:	67.625 67.625 Test Inertia 5005 62.010889	in. in.	Differenc 5. -0.9891
+ Note: (+) is adde Vehicle Dim Wheel Base Center of Gr Test Inertial V Longitudinal Lateral CG (Spare Tire ed equipment to ensions for : 140.5 ravity Weight (lb.) CG (in.) in.)	vehicle, (-) is remov Estimated Tota Vertical CG I C.G. Calculatio _in. 2270P MAS 5000 ± 63 ± NA	ved equipment f I Weight (Ib.) Location (in.) ons Front Tr Rear Tr Rear Tr H Targets t 110 t 4	65 rom vehicle 5004 28.0387 ack Width: ack Width:	67.625 67.625 67.625 Test Inertia 5005 62.010889 0.3715659	1438.125 140305.69 in. in.	Differenc 5. -0.9891 N/
+ Note: (+) is adde Vehicle Dim Wheel Base Center of Gr Test Inertial V Longitudinal Lateral CG (Vertical CG	Spare Tire ed equipment to ensions for : 140.5 ravity Weight (lb.) CG (in.) in.) (in.)	vehicle, (-) is remov Estimated Tota Vertical CG I C.G. Calculatio in. 2270P MAS 5000 ± 63 ± NA 28 c	ved equipment fi I Weight (Ib.) Location (in.) ons Front Tr Rear Tr H Targets H Targets H 110 H Targets	65 rom vehicle 5004 28.0387 ack Width: ack Width:	22 1/8 67.625 67.625 Test Inertia 5005 62.010889 0.3715659 28.04	in. in.	Differenc 5. -0.9891 N/ 0.0387
+ Note: (+) is adde Vehicle Dim Wheel Base Center of Gr Test Inertial V Longitudinal Lateral CG (Vertical CG Note: Long. CG	Spare Tire ed equipment to ensions for : 140.5 ravity Weight (lb.) CG (in.) in.) (in.)	vehicle, (-) is remov Estimated Tota Vertical CG I C.G. Calculatio in. 2270P MAS 5000 ± 63 ± NA 28 c	ved equipment fi I Weight (Ib.) Location (in.) ons Front Tr Rear Tr Rear Tr H Targets t 110 t 4 or greater vehicle	65 rom vehicle 5004 28.0387 ack Width: ack Width:	67.625 67.625 67.625 Test Inertia 5005 62.010889 0.3715659 28.04	1438.125 140305.69 in. in.	Differenc 5. -0.9891 N, 0.0387
+ Note: (+) is adde Vehicle Dim Wheel Base Center of Gr Test Inertial N Longitudinal Lateral CG (Vertical CG Note: Long. CG Note: Lateral C	Spare Tire ed equipment to ensions for : 140.5 ravity Weight (lb.) CG (in.) in.) (in.) is measured fro G measured fro	vehicle, (-) is remov Estimated Tota Vertical CG I C.G. Calculatio in	Ved equipment fill Weight (Ib.) Location (in.) Ons Front Tr Rear Tr H Targets H Targets	65 rom vehicle 5004 28.0387 ack Width: ack Width:	22 1/8 67.625 67.625 Test Inertia 5005 62.010889 0.3715659 28.04	in. in.	Differenc 5. -0.9891 N/ 0.0387
+ Note: (+) is adde Vehicle Dim Wheel Base Center of Gr Test Inertial V Longitudinal Lateral CG (Vertical CG Note: Long. CG Note: Lateral CC	Spare Tire ed equipment to ensions for : 140.5 ravity Weight (lb.) CG (in.) (in.) (in.) is measured from G measured from	vehicle, (-) is remov Estimated Tota Vertical CG I C.G. Calculatio in. 2270P MAS 5000 ± 63 ± NA 28 co m front axle of test m centerline - positiv	Ved equipment fill Weight (Ib.) Location (in.) Ons Front Tr Rear Tr Hangets Ha	65 rom vehicle 5004 28.0387 ack Width: ack Width:	22 1/8 67.625 67.625 Test Inertia 5005 62.010889 0.3715659 28.04 side	in. in. in.	Differenc 5. -0.9891 N/ 0.0387
+ Note: (+) is adde Vehicle Dim Wheel Base Center of Gr Test Inertial N Longitudinal Lateral CG (Vertical CG Note: Long. CG Note: Lateral CC CURB WEIG	Spare Tire ed equipment to ensions for : 140.5 ravity Weight (lb.) CG (in.) (in.) i is measured fro G measured fror iHT (lb.)	vehicle, (-) is remov Estimated Tota Vertical CG C.G. Calculatio in. 2270P MAS 5000 ± 63 ± NA 28 c m front axle of test n centerline - positiv	ved equipment fi I Weight (Ib.) Location (in.) ons Front Tr Rear Tr H Targets t 110 t 4 or greater vehicle ze to vehicle rigi	65 rom vehicle 5004 28.0387 ack Width: ack Width:	22 1/8 67.625 67.625 Test Inertia 5005 62.010889 0.3715659 28.04 side TEST INER	in. in. in. TIAL WEIG	Differenc 5. -0.9891 N/ 0.0387 HT (Ib.)
+ Note: (+) is adde Vehicle Dim Wheel Base Center of Gr Test Inertial N Longitudinal Lateral CG (Vertical CG Note: Long. CG Note: Lateral CG CURB WEIG	Spare Tire ed equipment to ensions for : 140.5 ravity Weight (lb.) CG (in.) (in.) G measured fro G measured fro G measured fro HT (lb.)	vehicle, (-) is remov Estimated Tota Vertical CG C.G. Calculatio 	ved equipment fi I Weight (Ib.) Location (in.) ons Front Tr Rear Tr Rear Tr H Targets t 110 t 4 or greater vehicle vehicle vehicle right	65 rom vehicle 5004 28.0387 ack Width: ack Width:	22 1/8 67.625 67.625 7est Inertia 5005 62.010889 0.3715659 28.04 side TEST INER	1438.125 140305.69 in. in. in. TIAL WEIG Left	Differenc 5. -0.9891 N/ 0.0387 HT (Ib.) Right
+ Note: (+) is adde Vehicle Dim Wheel Base Center of Gr Test Inertial N Longitudinal Lateral CG Note: Long. CG Note: Lateral CG CURB WEIG Front	Spare Tire ed equipment to ensions for : 140.5 ravity Weight (lb.) CG (in.) (in.) G measured fro G measured fro iHT (lb.) Left 1474	vehicle, (-) is remov Estimated Tota Vertical CG C.G. Calculatio 	ved equipment fi I Weight (Ib.) Location (in.) ons Front Tr Rear Tr H Targets H Target	65 rom vehicle 5004 28.0387 ack Width: ack Width:	22 1/8 67.625 67.625 7est Inertia 5005 62.010889 0.3715659 28.04 side TEST INER	1438.125 140305.69 in. in. in. TIAL WEIG Left 1406	Differenc 5. -0.9891 N. 0.0387 HT (Ib.) Right 1390
+ Note: (+) is adde Vehicle Dim Wheel Base Center of Gr Test Inertial N Longitudinal Lateral CG (Vertical CG Note: Long. CG Note: Lateral CC CURB WEIG Front Rear	Spare Tire ed equipment to ensions for : 140.5 ravity Weight (lb.) CG (in.) (in.) (in.)) is measured fro G measured fro G measured fro iHT (lb.) Left 1474 1041	vehicle, (-) is remov Estimated Tota Vertical CG C.G. Calculatio 	ved equipment fi I Weight (Ib.) Location (in.) ons Front Tr Rear Tr H Targets t 110 t 4	65 rom vehicle 5004 28.0387 ack Width: ack Width:	22 1/8 67.625 67.625 Test Inertia 5005 62.010889 0.3715659 28.04 side TEST INER Front Rear	in. in. in. I TIAL WEIG Left 1406 1069	Differenc 5. -0.9891 N/ 0.0387 HT (Ib.) Right 1390 1140
+ Note: (+) is adde Vehicle Dim Wheel Base Center of Gr Test Inertial N Longitudinal Lateral CG (Vertical CG Note: Long. CG Note: Lateral CC CURB WEIG Front Rear	Spare Tire ed equipment to ensions for : 140.5 ravity Weight (lb.) CG (in.) (in.) (in.) (in.) (in.) G measured fro G measured fro iHT (lb.) Left 1474 1041	vehicle, (-) is remov Estimated Tota Vertical CG C.G. Calculatio in. 2270P MAS 5000 ± 63 ± NA 28 c m front axle of test m centerline - positiv Right 1378 1091	ved equipment fi I Weight (Ib.) Location (in.) ons Front Tr Rear Tr H Targets t 110 t 4	65 rom vehicle 5004 28.0387 ack Width: ack Width:	22 1/8 67.625 67.625 7est Inertia 5005 62.010889 0.3715659 28.04 side TEST INER Front Rear	in. in. in. in. I TIAL WEIG Left 1406 1069	Differenc: 5. -0.9891 N/ 0.0387 HT (Ib.) Right 1390 1140
+ Note: (+) is adde Vehicle Dim Wheel Base Center of Gr Test Inertial V Longitudinal Lateral CG (Vertical CG Note: Long. CG Note: Lateral CC Note: Lateral CC Rote: Lateral CC Front Rear FRONT	Spare Tire ed equipment to ensions for : 140.5 ravity Weight (lb.) CG (in.) (in.) G measured fro G measured fro HT (lb.) Left 1474 1041 2852	vehicle, (-) is remov Estimated Tota Vertical CG C.G. Calculatio in. 2270P MAS 5000 ± 63 ± NA 28 co om front axle of test m centerline - positiv Right 1378 1091 lb.	ved equipment fi I Weight (Ib.) Location (in.) ons Front Tr Rear Tr H Targets 110 t 4 or greater vehicle ve to vehicle rigi	65 rom vehicle 5004 28.0387 ack Width: ack Width:	22 1/8 67.625 67.625 7est Inertia 5005 62.010889 0.3715659 28.04 side TEST INER Front Rear FRONT	in. in. in. in. TIAL WEIG Left 1406 1069 2796	Differenc: 5. -0.9891 N/ 0.0387 HT (Ib.) Right 1390 1140 Ib.
+ Note: (+) is adde Vehicle Dim Wheel Base Center of Gr Test Inertial V Longitudinal Lateral CG (Vertical CG Note: Long. CG Note: Lateral CC Note: Lateral CC Rote: Lateral CC Front Rear FRONT REAR	Spare Tire ed equipment to ensions for : 140.5 ravity Weight (lb.) CG (in.) (in.) G measured fro G measured fror G measured fr	vehicle, (-) is remov Estimated Tota Vertical CG C.G. Calculatic 	ved equipment fi I Weight (Ib.) Location (in.) ons Front Tr Rear Tr H Targets t 110 t 4 or greater vehicle ve to vehicle right	65 rom vehicle 5004 28.0387 ack Width: ack Width:	22 1/8 67.625 67.625 7est Inertia 5005 62.010889 0.3715659 28.04 side TEST INER Front Rear FRONT REAR	in. in. in. in. TIAL WEIG Left 1406 1069 2796 2209	Differenc 5. -0.9891 N/ 0.0387 HT (Ib.) HT (Ib.) Right 1390 1140 Ib. Ib.

Figure A-1. Vehicle Mass Distribution, Test No. GSH-1

Year: 20 Vehicle CG Det VEHICLE Equi + Unba + Hub + Brak + Pneu + Strob + Brak + CG F - Batte - Oil - Interi - Fuel - Cool - Wasl + Wate + Onbo	ermination oment allasted Truck (Curb e activation cylinder umatic tank (Nitroger pe/Brake Battery e Receiver/Wires Plate including DAS ery or	: <u>Dodge</u>) & frame n)	Model: Long CG (in.) 60 0 39 1/4 71 83 1/4 104 1/8 67 3/4 -6 5/8 6 3/4	Ram Lat CG (in.) -0.312074 22.875 -20 23 19 1/2 0 0	1500 Quad Long M (lbin.) 299040 0 314 2130 416.25 624.75	Cab Lat M (lbin.) -1555.37 434.625 -160 690 97.5
Vehicle CG Det VEHICLE Equi + Unba + Hub + Brak + Pneu + Strot + Strot + Strot - Oil - Interi - Fuel - Cool - Wasl + Wate + Onbo	ermination oment allasted Truck (Curb e activation cylinder matic tank (Nitroger pe/Brake Battery e Receiver/Wires Plate including DAS ery or) & frame n)	Long CG (in.) 60 0 39 1/4 71 83 1/4 104 1/8 67 3/4 -6 5/8 6 3/4	Lat CG (in.) -0.312074 22.875 -20 23 19 1/2 0 0	Long M (lbin.) 299040 0 314 2130 416.25 624.75	Lat M (lbin.) -1555.37 434.625 -160 690 97.5
VEHICLE Equi + Unba + Hub + Brak + Pneu + Strok + Strok + Strok + OG F - Batte - Oil - Interi - Fuel - Cool - Wasl + Wate + Onbo	oment allasted Truck (Curb e activation cylinder imatic tank (Nitroge pe/Brake Battery e Receiver/Wires Plate including DAS ery or) & frame n)	Long CG (in.) 60 0 39 1/4 71 83 1/4 104 1/8 67 3/4 -6 5/8 6 3/4	Lat CG (in.) -0.312074 22.875 -20 23 19 1/2 0 0	Long M (lbin.) 299040 0 314 2130 416.25 624.75	Lat M (lbin.) -1555.37 434.625 -160 690 97.5
VEHICLE Equi + Unba + Hub + Brak + Pneu + Strob + Strob + Strob - CG F - GF - Oil - Interi - Fuel - Cool - Wasl + Wate + Onbo	oment allasted Truck (Curb e activation cylinder umatic tank (Nitroger pe/Brake Battery e Receiver/Wires Plate including DAS ery or) & frame n)	(in.) 60 0 39 1/4 71 83 1/4 104 1/8 67 3/4 -6 5/8 6 3/4	(in.) -0.312074 22.875 -20 23 19 1/2 0 0	(lbin.) 299040 0 314 2130 416.25 624.75	(lbin.) -1555.37 434.625 -160 690 97.5
+ Unba + Hub + Hub + Brak + Pneu + Strot + Strot + Brak + CG F - Oil - Interi - Fuel - Cool - Wasl + Wate + Onbo	allasted Truck (Curb e activation cylinder imatic tank (Nitroger be/Brake Battery e Receiver/Wires Plate including DAS ery or) & frame n)	60 0 39 1/4 71 83 1/4 104 1/8 67 3/4 -6 5/8 6 3/4	-0.312074 22.875 -20 23 19 1/2 0 0	(121 min) 299040 0 314 2130 416.25 624.75	-1555.37 434.625 -160 690 97.5
+ Hub + Brak + Pneu + Strot + Strot + Strot - Strot - GF - Oil - Interi - Fuel - Cool - Wasl + Wate + Onbo	e activation cylinder Imatic tank (Nitroger be/Brake Battery e Receiver/Wires Plate including DAS ery or	, r & frame n)	0 39 1/4 71 83 1/4 104 1/8 67 3/4 -6 5/8 6 3/4	22.875 -20 23 19 1/2 0 0	0 314 2130 416.25 624.75	434.625 -160 690 97.5
+ Brak + Pneu + Strot + Brak + CG F - Batte - Oil - Interi - Fuel - Cool - Was + Wate + Onbo	e activation cylinder Imatic tank (Nitroge pe/Brake Battery e Receiver/Wires Plate including DAS ery or	* & frame n)	39 1/4 71 83 1/4 104 1/8 67 3/4 -6 5/8 6 3/4	-20 23 19 1/2 0 0	314 2130 416.25 624.75	-160 690 97.5
+ Pneu + Strok + Brak + CG F - Batte - Oil - Interi - Fuel - Cool - Was + Wate + Onbo	imatic tank (Nitroger pe/Brake Battery e Receiver/Wires Plate including DAS ery or	n)	71 83 1/4 104 1/8 67 3/4 -6 5/8 6 3/4	23 19 1/2 0 0	2130 416.25 624.75	690 97.5
+ Strot + Brak + CG F - Batte - Oil - Interi - Fuel - Cool - Was + Wate + Onbo	e Receiver/Wires Plate including DAS ery or		83 1/4 104 1/8 67 3/4 -6 5/8 6 3/4	19 1/2 0 0	416.25 624.75	97.5
+ Brak + CG F - Batte - Oil - Interi - Fuel - Cool - Was + Wate + Onbo	e Receiver/Wires Plate including DAS ery or		104 1/8 67 3/4 -6 5/8 6 3/4	0	624.75	-
+ CG F - Batte - Oil - Interi - Fuel - Cool - Wasl + Wate + Onbo	Plate including DAS ery or ant		67 3/4 -6 5/8 6 3/4	0		0
- Batte - Oil - Interi - Fuel - Cool - Waste + Wate + Onbo	or ant		-6 5/8 6 3/4	00	2845.5	0
- Oil - Interi - Fuel - Cool - Was + Wate + Onbo	or		6 3/4	-28	304.75	1288
- Interi - Fuel - Cool - Was + Wate + Onbo	or		00/1	-3	-60.75	27
- Fuel - Cool - Was + Wate + Onbo	ant		63 1/2	0	-4953	0
- Cool - Wasl + Wate + Onbo	ant		120	-18	-20400	3060
- Was + Wate + Onbo			-26 7/8	0	268.75	0
+ Wate + Onbo	ner fluid		-30	-19	30	19
+ Onbo	er Ballast (In Fuel Ta	ank)	120	-18	16440	-2466
	pard Supplemental E	Battery	66 1/2	17 3/8	864.5	225.875
+ Sma	t Barrier Provisions		68	-21 1/2	612	-193.5
+ Spar	e Tire		167 1/4	0	10871.25	0
Calit	orated Scales Used					
Equi	oment Type	Manufactur	rer	Serial #	Capacity	
Pad	Scale	Pennsylvar	nia Scale	95-228908	5000 lbs.	
Pad	Scale	Pennsylvar	nia Scale	95-228909	5000 lbs.	
Race	Wheel Scales	Intercomp		22033056	1500/pad	

Figure A-2. Vehicle Mass Distribution, Test No. GSH-1, Cont.

Y		restinaniei	GSH-2	VIN:	1CR	R6FTXDS57	5838
	ear: 2013	Make:	Dodge	Model:		Ram 1500	
Vehicle	CG Determinatio	on					
				Weight	Vertical CG	Vertical M	
VEHICLE	Equipment			(lb.)	(in.)	(lbin.)	
F	Unballasted	Truck (Curb)		5196	29.387125	152695.5	
+	Hub			19	16	304	
+	Brake activa	ation cylinder &	frame	7	31.5	220.5	
+	Pneumatic t	ank (Nitrogen)		30	28 5/8	858.75	
F	Strobe/Brak	e Battery		5	28.5	142.5	
+	Brake Rece	iver/Wires		6	53 5/8	321.75	
+	CG Plate in	cluding DAS		42	32.75	1375.5	
•	Battery			-42	42.5	-1785	
	Oil			-7	17.75	-124.25	
	Interior			-93	60.125	-5591.625	
•	Fuel			-169	17.75	-2999.75	
•	Coolant			-13	41	-533	
•	Washer fluid	d		-4	39 7/8	-159.5	
+	Water Balla	st (In Fuel Tank	()			0	
+	Onboard Su	pplemental Bat	tery	13	28.5	370.5	
+	Smart			9	25.25	227.25	
		Vertical CG	Location (in.)	29.0704	10		
Vehicle [Wheel B	Dimensions for C ase: 140.375	Vertical CG C.G. Calculatio in.	Location (in.) ns Front Tr Rear Tr	29.0704 ack Width: ack Width:	68.75 68.125	in. in.	
Vehicle I Wheel B	Dimensions for C ase: 140.375	Vertical CG C.G. Calculatio in.	Location (in.) ns Front Tr Rear Tr	29.0704 ack Width: ack Width:	68.75 68.125	in. in.	Difference
Vehicle I Wheel B	Dimensions for C ase: 140.375 f Gravity	Vertical CG C.G. Calculatio in. 2270P MAS	Location (in.) ns Front Tr Rear Tr H Targets	29.0704 ack Width: ack Width:	68.75 68.125 Test Inertial	in. in.	Differenc
Vehicle I Wheel B Center o Fest Inert	Dimensions for C ase: 140.375 f Gravity tial Weight (lb.)	Vertical CG C.G. Calculatio in. 2270P MAS 5000 ±	Location (in.) ns Front Tr Rear Tr H Targets 110 4	29.0704 ack Width: ack Width:	68.75 68.125 Test Inertia 5013 60.792764	in. in.	Differenc 13.
Vehicle I Wheel B Center of Test Inert -ongitudii	Dimensions for C ase: 140.375 f Gravity tial Weight (Ib.) nal CG (in.)	Vertical CG C.G. Calculatio in. 2270P MAS 5000 ± 63 ±	Location (in.) ns Front Tr Rear Tr H Targets 110 14	29.0704 ack Width: ack Width:	68.75 68.125 Test Inertia 5013 60.792764 0.2116061	in. in.	Differenc 13. -2.2072
Vehicle I Wheel B Center o Test Inert -ongitudii -ateral C	Dimensions for (ase: 140.375 f Gravity tial Weight (lb.) nal CG (in.) G (in.)	Vertical CG C.G. Calculatio in. 2270P MAS 5000 ± 63 ± NA 286	Location (in.) ns Front Tr Rear Tr H Targets 110 4 r greater	29.0704 ack Width: ack Width:	68.75 68.125 Test Inertia 5013 60.792764 0.2116061 29.07	in. in.	Differenc 13. -2.2072 N. 1.0704
Vehicle I Wheel B Center o Fest Inert -ongitudii -ateral C /ertical C	Dimensions for (ase: 140.375 f Gravity fial Weight (lb.) nal CG (in.) G (in.) CG (in.)	Vertical CG C.G. Calculatio in. 2270P MAS 5000 ± 63 ± NA 28 cm front axis of test	Location (in.) ns Front Tr Rear Tr H Targets 110 14 pr greater vehicle	29.0704 rack Width: rack Width:	68.75 68.125 Test Inertia 5013 60.792764 0.2116061 29.07	in. in.	Differenc 13. -2.2072 N 1.0704
Vehicle I Wheel B Center o Test Inert -ongitudii -ateral C Vertical C Vertical C vote: Long	Dimensions for C ase: 140.375 f Gravity tial Weight (lb.) nal CG (in.) G (in.) CG (in.) . CG is measured from	Vertical CG C.G. Calculatio in. 2270P MAS 5000 ± 63 ± NA 28 c m front axle of test n centerline - positio	Location (in.) ns Front Tr Rear Tr H Targets 110 14 or greater vehicle ve to vehicle rig	29.0704 ack Width: ack Width: ht (passenger	68.75 68.125 Test Inertia 5013 60.792764 0.2116061 29.07	in. in.	Differenc 13. -2.2072 N/ 1.0704
Vehicle I Wheel B Center of Test Inert -ongitudin -ateral C Vertical C Vertical C Vote: Long Vote: Later	Dimensions for C ase: 140.375 f Gravity tial Weight (Ib.) nal CG (in.) G (in.) CG (in.) . CG is measured from al CG measured from EIGHT (Ib.)	Vertical CG C.G. Calculatio in. 2270P MAS 5000 ± 63 ± NA 28 c m front axle of test n centerline - positiv	Location (in.) ns Front Tr Rear Tr H Targets 110 110 4 or greater vehicle ve to vehicle rig	29.0704 rack Width: ack Width: ht (passenger	68.75 68.125 Test Inertial 5013 60.792764 0.2116061 29.07) side TEST INER	in. in. I	Differenc 13. -2.2072 N. 1.0704
Vehicle I Wheel B Center of Test Inert -ongitudii -ateral C Vertical C Vertical C Vote: Long Vote: Later	Dimensions for C ase: 140.375 f Gravity tial Weight (Ib.) nal CG (in.) G (in.) CG (in.) . CG is measured from al CG measured from EIGHT (Ib.)	Vertical CG C.G. Calculatio in. 2270P MAS 5000 ± 63 ± NA 28 c m front axle of test n centerline - positiv Right	Location (in.) ns Front Tr Rear Tr H Targets 110 14 or greater vehicle ve to vehicle rig	29.0704 ack Width: ack Width: ht (passenger	68.75 68.125 Test Inertial 5013 60.792764 0.2116061 29.07) side TEST INER	in. in. I	Differenc 13. -2.2072 N. 1.0704
Vehicle I Wheel B Center of Test Inert -ongitudii -ateral C Vertical C Vortical C Vorte: Long Note: Later	Dimensions for C ase: 140.375 f Gravity tial Weight (Ib.) nal CG (in.) G (in.) CG (in.) . CG is measured from al CG measured from EIGHT (Ib.) Left 1446	Vertical CG C.G. Calculatio in. 2270P MAS 5000 ± 63 ± NA 28 c m front axle of test n centerline - positiv Right 1476	Location (in.) ns Front Tr Rear Tr H Targets 110 14 or greater vehicle ve to vehicle rig	29.0704 ack Width: ack Width: ht (passenger	68.75 68.125 Test Inertial 5013 60.792764 0.2116061 29.07) side TEST INER	in. in. I TIAL WEIGH	Differenc 13. -2.2072 N/ 1.0704 IT (Ib.) Right
Vehicle I Wheel B Center o Test Inert Longitudii Lateral C Vertical C Vote: Long Vote: Later CURB W Front Rear	Dimensions for (ase: 140.375 f Gravity tial Weight (Ib.) nal CG (in.) G (in.) CG (in.) CG is measured from EIGHT (Ib.) Left 1446 1167	Vertical CG C.G. Calculatio in. 2270P MAS 5000 ± 63 ± NA 28 c m front axle of test n centerline - positiv Right 1476 1107	Location (in.) ns Front Tr Rear Tr H Targets 110 14 or greater vehicle vehicle rig	29.0704 ack Width: ack Width:	68.75 68.125 Test Inertial 5013 60.792764 0.2116061 29.07) side TEST INER Front Rear	in. in. TIAL WEIGH Left 1389 1102	Differenc 13. -2.2072 N/ 1.0704 IT (Ib.) Right 1453 1069
Vehicle I Wheel B Center of Test Inert Longitudii Lateral C Vertical C	Dimensions for (ase: 140.375 f Gravity ial Weight (lb.) nal CG (in.) G (in.) CG (in.) CG is measured from al CG measured from EIGHT (lb.) Left 1446 1167	Vertical CG C.G. Calculatio in. 2270P MAS 5000 ± 63 ± NA 28 c m front axle of test n centerline - positiv Right 1476 1107	Location (in.) ns Front Tr Rear Tr H Targets 110 14 or greater vehicle vehicle vehicle rig	29.0704 ack Width: ack Width:	68.75 68.125 Test Inertial 5013 60.792764 0.2116061 29.07) side TEST INER Front Rear	in. in. TIAL WEIGH Left 1389 1102	Differenc 13. -2.2072 N/ 1.0704 IT (Ib.) Right 1453 1069
Vehicle I Wheel B Center o Test Inert Longitudii Lateral C Vertical C	Dimensions for (ase: 140.375 f Gravity tial Weight (lb.) nal CG (in.) G (in.) CG (in.) CG is measured from al CG measured from EIGHT (lb.) Left 1446 1167 2922 2274	Vertical CG C.G. Calculatio in. 2270P MAS 5000 ± 63 ± NA 28 c m front axle of test n centerline - positiv Right 1476 1107 Ib.	Location (in.) ns Front Tr Rear Tr H Targets 110 14 or greater vehicle vehicle rig	29.0704 ack Width: ack Width:	68.75 68.125 Test Inertial 5013 60.792764 0.2116061 29.07) side TEST INER Front Rear FRONT REAP	in. in. I TIAL WEIGH Left 1389 1102 2842 2171	Differenc 13. -2.2072 N/ 1.0704 IT (Ib.) Right 1453 1069 Ib.

Figure A-3. Vehicle Mass Distribution, Test No. GSH-2

Year: 2013 Make: Dodge Model: Ram 1500 Vehicle CG Determination VEHICLE Equipment (in.) (in.) (ibin.) + Unballasted Truck (Curb) 60.375 -0.197568 313708.5 + Hub 0 23.75 0 + Brake activation cylinder & frame 37.25 -21 260.75 + Pneumatic tank (Nitrogen) 72 7/8 -22 3/8 2186.25 + Strobe/Brake Battery 74.125 17 370.625 + Brake Receiver/Wires 107.25 0 643.5 + CG Plate including DAS 65.5 0 2751 - Battery -9.125 -27 383.25	Lat M (lbin.) -1026.50 451.25 -147 -671.25 85 0
Vehicle CG Determination VEHICLE Equipment (in.) (in.) (lbin.) + Unballasted Truck (Curb) 60.375 -0.197568 313708.5 + Hub 0 23.75 0 + Brake activation cylinder & frame 37.25 -21 260.75 + Pneumatic tank (Nitrogen) 72 7/8 -22 3/8 2186.25 + Strobe/Brake Battery 74.125 17 370.625 + Brake Receiver/Wires 107.25 0 643.5 + CG Plate including DAS 65.5 0 2751 - Battery -9.125 -27 383.25	Lat M (lbin.) -1026.50 451.25 -147 -671.25 85 0
VEHICLE Equipment Long CG Lat CG Long M + Unballasted Truck (Curb) 60.375 -0.197568 313708.5 + Hub 0 23.75 0 + Brake activation cylinder & frame 37.25 -21 260.75 + Pneumatic tank (Nitrogen) 72 7/8 -22 3/8 2186.25 + Strobe/Brake Battery 74.125 17 370.625 + Brake Receiver/Wires 107.25 0 643.5 + CG Plate including DAS 65.5 0 2751 - Battery -9.125 -27 383.25	Lat M (lbin.) -1026.50 451.25 -147 -671.25 85 0
VEHICLE Equipment (in.) (in.) (lbin.) + Unballasted Truck (Curb) 60.375 -0.197568 313708.5 + Hub 0 23.75 0 + Brake activation cylinder & frame 37.25 -21 260.75 + Pneumatic tank (Nitrogen) 72 7/8 -22 3/8 2186.25 + Strobe/Brake Battery 74.125 17 370.625 + Brake Receiver/Wires 107.25 0 643.5 + CG Plate including DAS 65.5 0 2751 - Battery -9.125 -27 383.25 - Oil -2.125 4 14.875	(lbin. -1026.5 451.25 -147 -671.2 85 0
+ Unballasted Truck (Curb) 60.375 -0.197568 313708.5 + Hub 0 23.75 0 + Brake activation cylinder & frame 37.25 -21 260.75 + Pneumatic tank (Nitrogen) 72 7/8 -22 3/8 2186.25 + Strobe/Brake Battery 74.125 17 370.625 + Brake Receiver/Wires 107.25 0 643.5 + CG Plate including DAS 65.5 0 2751 - Battery -9.125 -27 383.25 - Oil -2125 4 14.875	-1026.5 451.25 -147 -671.2 85 0
+ Hub 0 23.75 0 + Brake activation cylinder & frame 37.25 -21 260.75 + Pneumatic tank (Nitrogen) 72 7/8 -22 3/8 2186.25 + Strobe/Brake Battery 74.125 17 370.625 + Brake Receiver/Wires 107.25 0 643.5 + CG Plate including DAS 65.5 0 2751 - Battery -9.125 -27 383.25 - Oil -2125 4 14.875	451.25 -147 -671.2 85 0
+ Brake activation cylinder & frame 37.25 -21 260.75 + Pneumatic tank (Nitrogen) 72 7/8 -22 3/8 2186.25 + Strobe/Brake Battery 74.125 17 370.625 + Brake Receiver/Wires 107.25 0 643.5 + CG Plate including DAS 65.5 0 2751 - Battery -9.125 -27 383.25 - Oil -2125 4 14.875	-147 -671.2 85 0
+ Pneumatic tank (Nitrogen) 72 7/8 -22 3/8 2186.25 + Strobe/Brake Battery 74.125 17 370.625 + Brake Receiver/Wires 107.25 0 643.5 + CG Plate including DAS 65.5 0 2751 - Battery -9.125 -27 383.25 - Oil -2125 4 14.875	-671.2 85 0
+ Strobe/Brake Battery 74.125 17 370.625 + Brake Receiver/Wires 107.25 0 643.5 + CG Plate including DAS 65.5 0 2751 - Battery -9.125 -27 383.25 - Oil -2125 4 14.875	85 0
+ Brake Receiver/Wires 107.25 0 643.5 + CG Plate including DAS 65.5 0 2751 - Battery -9.125 -27 383.25 - Oil -2.125 4 14.875	0
+ CG Plate including DAS 65.5 0 2751 - Battery -9.125 -27 383.25 - Oil -2.125 4 14.875	
- Battery -9.125 -27 383.25	0
	1134
	-28
- Interior 64 7/8 0 -6033.375	0
- Fuel 103 5/8 -26.5 -17512.63	4478.5
- Coolant -20 3/8 2 1/2 264.875	-32.5
- Washer fluid -30.75 -18.5 123	74
+ Water Ballast (In Fuel Tank) 103.625 -26.5 0	0
+ Onboard Supplemental Battery 66.5 18 864.5	234
+ Smart 79.75 19.5 717.75	175.5
0	0
Calibrated Scales Used	
Equipment Type Manufacturer Serial # Capacity	
Pad Scale Pennsylvania Scale 95-228908 5000 lbs.	
Pad Scale Pennsylvania Scale 95-228909 5000 lbs.	
Race Wheel Scales Intercomp 22033056 1500/pad	
USE #2 HUB	1
USE #2 HUB	1
USE #2 HUB	

Figure A-4. Vehicle Mass Distribution, Test No. GSH-2, Cont.

Appendix B. Material Specifications

Item No.	Description	Material Specification	Reference
a1	Portable Concrete Barrier	Min f'c = 5,000 psi [34.5 MPa]	
a2	#4 [13] Rebar, 72" [1,829] Total Unbent Length	ASTM A615 Gr. 60	585826, 585655
a3	#4 [13] Rebar, 146" [3,708] Total Length	ASTM A615 Gr. 60	585826, 585655
a4	#5 [16] Rebar, 146" [3,708] Total Length	ASTM A615 Gr. 60	KN16100227, KN16102104, KN16102105, KN16102106
a5	#6 [19] Rebar, 36" [914] Total Unbent Length	ASTM A615 Gr. 60	KN15102677, KN1610493, KN16101494, 16102891
a6	#6 [19] Rebar, 101" [2,565] Total Unbent Length	ASTM A709 Gr. 70 or A706 Gr. 60	16100656
a7	#6 [19] Rebar, 91" [2,311] Total Unbent Length	ASTM A709 Gr. 70 or A706 Gr. 60	16100656
a8	#6 [19] Rebar, 102" [2,591] Total Unbent Length	ASTM A709 Gr. 70 or A706 Gr. 60	16100656
a9	1 1/4" [32] Dia., 28" [711] Long Connector Pin	ASTM A36	6218817
b1	31 3/4"x22 1/16"x1/4" [806x561x6] Steel Plate	ASTM A36	H#18024561
b2	30 3/4"x8"x1/4" [782x203x6] Bent Steel Plate	ASTM A36	H#18024561
b3	24 7/16"x8"x1/4" [620x203x6] Bent Steel Plate	ASTM A36	H#18024561
c1	10-gauge [3.4] Thrie-Beam Terminal Connector	AASHTO M180 Min. Yield Strength = 50 ksi [345 MPa] Min. Ultimate Strength = 70 ksi [483 MPa]	H#A81568
c2	12'-6" [3,810] 12-gauge [2.7] Thrie- Beam Section	AASHTO M180	R#18-865 HC#L30918 H#222878
d1	229"x8 1/2"x5/8" [5,817x216x16] Steel Plate	ASTM A572 Gr. 50	H#L109612
e1	3/4" [19] Dia., 6" [152] Long Powers Fasteners Wedge Bolt+	As Supplied	PO# Zoro 19532469 Grainger Sales Order# 1322294683
e2	5/8"-11 UNC [M16x2], 2" [51] Long Guardrail Bolt and Nut	Bolt - ASTM A307 Gr. A Nut - ASTM A563A	R#18-865 Bolts: H#10517060 Nuts: 10508780
e3	3/4"-10 UNC [M20x2.5], 2" [51] Long Heavy Hex Head Bolt and Nut	Bolt - ASTM F3125 Gr. A325 Type 1 or equivalent Nut - ASTM A563DH or equivalent	Bolt: H#HH64028 Nut: H#HI05508
e4	3/4" [19] Dia. Plain Flat Washer	ASTM F844	P#1133186 C#480006711 L#M-SWE0412140-6

Table B-1. Bill of Materials, Test Nos. GSH-1 and GSH-2

W3716 U.S. HWY 10 • MAIDEN ROCK, WI 54750 (715) 647-2311 800-325-8456 Fax (715) 647-5181 Website: www.wieserconcrete.com

CONCRETE TEST RESULTS

PROJECT: Barrier

Testing By: Jason Hendricks

ACI GRADE 1

CONCRETE SUPPLIER Wieser Concrete

TEST SET POUR DATE RESULTS AVERAGE TEST TYPE 5/31/2016 28 Day 6/28/2017 28 Day

1	Λ.	
1/0	100	
-7	Signature	

Figure B-1. PCB Certification, Test Nos. GSH-1 and GSH-2

Date Shipped: 15-APR-16	P FWIP: 52825	roduct: DEF <mark>#4</mark> 704	(1/2") Custe	omer: ERM	s	Sp	oecification	: ASTM /	A615/A706 G	r 60 Cust. PO:
Heat CHEMICA Number C Ma	AL ANALYSIS PS	G (In Weig Si Cu	ht %, unce Ni	ertainty o Cr	f measure	ement 0 Al	.005%) V	в	(He Cb	at cast 03/10/16 Sn

585826 0.27 1.23 0.007 0.017 0.23 0.22 0.10 0.15 0.026 0.003 0.036 0.0006 0.000 0.010 0.0097 0.001 Carbon Equivalent = 0.496

147

		MEC	HANICAL	PROPERTIES	(Ten			
Heat Number	Sample No.		Yield (Psi)	Ultimate (Psi)	Elongation (%)	Reduction (%)	Bend	Wt/ft
585826 01	01		70780	99670	16.6		OK	0.676
		(MPa)	488.0	687.2				
585826	02		67431	96900	15.0		OK	0.676
		(MPa)	464.9	668.1				

All melting and manufacturing processes of the material subject to this test certificate occurred in the United States of America. ERMS also certifies this material to be free from Mercury contamination.

This material has been produced, tested and conforms to the

requirements of the applicable specifications. We hereby certify that the above test results represent those contained in the records of the Company.

Volume V. News

Ti

Valoree Varick General Supervisor of Quality

Methods used: ASTM A370, A510, A615, A706.

Material test report shall not be reproduced except in full, without approval of the company.

Figure B-2. #4 (13-mm) Rebar ASTM A615 Gr. 60, Test Nos. GSH-1 and GSH-2

Pueblo, CO 81004 USA

MATERIAL TEST REPORT

Date Printed: 09-MAY-16

Date Shipped: 09-MAY-16	Product: DEF	#4 (1/2")	Specification: ASTM A615/A706 Gr 60
	FW1P: 52825704	Customer: ERMS	Cust. PO:

Heat	CHE	MICA	L AN	ALYS	IS (I	n Weigh	t %, unc	ertainty	of measu	rement	0.005%)	(H	eat cast 03/0	2/16)	
Number	С	Mn	Р	s	Si	Cu	Ni	Cr	Mo	Al	v	В	Cb	Sn	N	Ti
585655	0.25 Carbon Eq	1.24 puivalent =	0.008 = 0.475	0.020	0.22	0.20	0.09	0.13	0.022	0.003	0.040	0.0005	0.000	0.010	0.0094	0.001
				,45												

		MEC	HANICA	L PROPERTIES	(Ten	(Tensiles test date 03/09/16)		
Heat Number	Sample No.		Yield (Psi)	Ultimate (Psi)	Elongation (%)	Reduction (%)	Bend	Wt/ft
585655	01		63597	93340	14.9		OK	0.669
		(MPa)	438.5	643.6				
585655	02		63712	94340	15.1		OK	0.669
		(MPa)	439.3	650.5				

All melting and manufacturing processes of the material subject to this test certificate occurred in the United States of America. ERMS also certifies this material to be free from Mercury contamination.

Volence V. News

Valoree Varick General Supervisor of Quality

This material has been produced, tested and conforms to the requirements of the applicable specifications. We hereby certify that the

above test results represent those contained in the records of the Company.

Methods used: ASTM A370, A510, A615, A706.

Material test report shall not be reproduced except in full, without approval of the company.

Figure B-3. #4 (13-mm) Rebar ASTM A615 Gr. 60, Test Nos. GSH-1 and GSH-2
SOLD TO:	ADELPHI 411 MAIN NEW PRA	A METALS I LLC I ST E AGUE, MN 56071-	NUCOR STEE	IR L KANKA	KEE, IN	<i>c.</i>	CERTIF	IED MILL	TEST RI	EPORT	P	age:	1	
SHIP TO:	ADELPHI C/O MIDV 1745 165 HAMMON	A METALS VEST TERMINAL SERVICES ITH STREET ID, IN 46320-					Ship from: MTR #: 00 Nucor Ste One Nuco Bourbonna 815-937-3	: 000111719 el Kankaked r Way ais, IL 6091 131	e, Inc. 4		D B.L. Num Load Num)ate: hber: hber:	21-Mar-201 516780 271160	16
Materia	al Safety Data	a Sheets are available at www.nucorbar.	com or by contacting	g your inside	sales repres	entative.						N	NBMG-08 January	1, 2012
LOT	#			PHY	SICAL TES	TS				CHEM	ICAL TESTS			
HEA	NT #	DESCRIPTION	YIELD P.S.I.	TENSILE P.S.I.	ELONG % IN 8"	BEND	WT% DEF	C Ni M	An Cr P	Mo	s v si	СЬ	Cu Sn	C.E.
PC KN16 ⁻ KN16 ⁻	D# => 10022601 100226	817659 Nucor Steel - Kankakee Inc 16/#5 Rebar 60' A615M GR420 (Gr60) ASTM A615/A615M-15 GR 60[420	73,843 509MPa	107,760 743MPa	15.9%	ок	-3.6% .035	.40 .22	1.05 .16	.016 .076	.052 .008	.20 .001	.45	

PO# => KN1610022601 KN16100226	817659 Nucor Steel - Kankakee Inc 16/#5 Rebar 60' A615M GR420 (Gr60) ASTM A615/A615M-15 GR 60[420]	73,843 509MPa	107,760 743MPa	15.9%	ОК	-3.6% .035	.40 .22	1.05 .16	.016 .076	.052 .008	.20 .001	.45
PO# =>	Melted 01/15/16 Rolled 01/21 817659	/16										
KN1610022701	Nucor Steel - Kankakee Inc	73,261	107,856	16.9%	OK	-3.6%	.39	1.08	.014	.043	.18	.46
KN16100227	16/#5 Rebar 60' A615M GR420 (Gr60)	505MPa	744MPa			.035	.20	.14	.071	.009	.001	
	ASTM A615/A615M-15 GR 60[420] AASHTO M31-07							-57)			
	Melted 01/15/16 Rolled 01/21	/16										
I hereby certify the the specifications a	at the material described herein has been manuf, and standards listed above and that it satisfie	actured in ac s those requi	cordance with rements.							Mat	Lugare	2
 Weid repair was Melted and Manu Mercury, Radius have not been t 	, nor performed on this material, ifactured in the United States, n, or Alpha source materials in any form used in the production of this material.					QUALITY ASSURANCE:	Mat	+ Luvmee		10000	/	

Figure B-4. #5 (16-mm) Rebar ASTM A615 Gr. 60, Test Nos. GSH-1 and GSH-2

-

SOLD ADELPH TO: 411 MAII NEW PR	IIA METALS I LLC N ST E AGUE, MN 56071-	NUCOR NUCOR STEEL KANKAKEE, INC.				CERTIF	REPOR	т	Page:	1			
SHIP ADELPH TO: C/O MID 1745 165 HAMMOI	IA METALS WEST TERMINAL SERVICES 5TH STREET ND, IN 46320-	om or by contratio	a vaur incide		contativo	Ship from MTR #: 00 Nucor Ste One Nuco Bourbonn 815-937-3	: 000121420 eel Kankak or Way ais, IL 609 3131) ee, Inc. 914		B.L. N Load N	Date: lumber: lumber:	13-May-20 520718 273861	016
LOT #		on of by contactin	PHY	SICAL TES	TS				CHEI	MICAL TES	TS	ADMO-00 Januar	y 1, 2012
HEAT #	DESCRIPTION	YIELD P.S.I.	TENSILE P.S.I.	ELONG % IN 8"	BEND	WT% DEF	C Ni	Mn Cr	PMo	S V	Si Cb	Cu Sn	C.E
PO# => KN1610210401 KN16102104	818290 Nucor Steel - Kankakee Inc 16/#5 Rebar 60' A615M GR420 (Gr60) ASTM A615/A615M-15 GR 60[420] AASHTO M31-07	68,538 473MPa	103,575 a 714MPa	13.9%	ок	-3.5% .038	.38 .17	1.04 .16	.018 .058	.054 .007	.22 .001	.32	
PO# => KN1610210501 KN16102105	Melted 04/14/16 Rolled 04 818290 Nucor Steel - Kankakee Inc 16/#5 Rebar 60' A615M GR420 (Gr60) ASTM A615/A615M-15 GR 60[420] AASHTO M31-07	4/21/16 67,674 467MPa	105,004 724MPa	14.4%	ОК	-3.4% .038	.39 .15	1.05 .17	.017 .054	.050 .008	.21 .001	.30	
PO# => KN1610210601 KN16102106	Melted 04/14/16 Rolled 04 818290 Nucor Steel - Kankakee Inc 16/#5 Rebar 60' A615M GR420 (Gr60) ASTM A615/A615M-15 GR 60[420] AASHTO M31-07 Melted 04/14/16 Rolled 04	4/21/16 67,874 468MPa 4/21/16	105,201 a 725MPa	15.0%	ок	-3.4% .038	.39 .16	1.06 .14	.015 .054	.055 .008	.21 .001	.31	
<pre>I hereby certify th the specifications 1.1 Well repart wo 2.1 Self-d and Set 3.1 Self-d and Set 3.1 Self-d and Set</pre>	hat the material b-scribed herein has been and standards listed above and that it sat so not periones in this material milactured in the "hire's drates. M. of Alpus ords - materials in any form	manufactured in a lufies those requ	ccordance wir lietents,	h		QUALITY		att. Tayvme		Mat	Lega	not-	

Figure B-5. #5 (16-mm) Rebar ASTM A615 Gr. 60, Test Nos. GSH-1 and GSH-2

December 17, 2020 MwRSF Report No. TRP-03-387b-20

MILL CERTIFICATION DETAILS

Purchase Order #:	816680	Heat #: KN15106277
Customer	ADELPHIA METALS I LLC - NEW PRAGUE	Customer Part #:
Bill of Lading :	516339	Length: 30'0"
Certified By :	Matt Luymes	Date: 10/22/2015
Lot #	KN1510627701	Tag #: KN1513125877
Grade	ASTM A615/A615M-15 GR 60[420] AASHTO M31-07	Size : # 6(19) RS
Melt Date :	10/22/2015	Divison : NSKNK-Kankakee, IL
Qty Shipped LBS:	12978	Qty Shipped PCS : 288
Comments		Roll Date : 10/23/2015

Chemical P	roperties	-Wt.%							Physical Properties
С	Mn	Si	S	P	Cu	Cr	Ni	Mo	Imperial-psi
0.38	1.08	0.19	0.049	0.022	0.30	0 17	0.18	0.061	Tensile:
0.00	1.00	0.15	0.045	0.022	0.00	0.17	0.10	0.001	Yield:
V	Nb	Sn		, <4	0				Elongation (in 8 inches):
0.0092	0.002	0.015		. 2 -					Elongation (in 2 inches):
0.0002	0.002	0.015							Bend Test:

106877 69535 13.25

OK

Carbon Equiv:

I hereby certify that the material described herein has been manufactured in accordance with the specification and standards listed above and that it satisfies those requirements. All melting and manufacturing process were performed in the United States of America unless otherwise noted on the mill test report.

Matt Luymes

Matt Luymes, Chief Metallurgist

Figure B-6. #6 (19-mm) Rebar ASTM A615 Gr. 60, Test Nos. GSH-1 and GSH-2

SOLD ADELPHI TO: 411 MAIN NEW PR/	A METALS I LLC	NUCOR STEEL KANN	AKEE, IN	<i>c.</i>	CERTIFIE	D MILL	TEST R	REPOR	г	Page: 1	
SHIP ADELPHI 411 MAIN NEW PR/	A METALS I STREET EAST AGUE, MN 56071-				Ship from: MTR #: 000 Nucor Steel One Nucor N Bourbonnais 815-937-313	0113084 Kankake Way s, IL 609 ⁻ 31	e, Inc. 14		B.L. Nu Load Nu	Date: 29 mber: 5 mber: 21	9-Mar-2 17308 71293
Material Safety Dat	a Sheets are available at www.nucorbar.com	n or by contacting your insid	e sales repres	entative.						NB	MG-08 Janua
LOT # HEAT #	DESCRIPTION	YIELD TENSILE P.S.I. P.S.I.	ELONG % IN 8"	TS BEND	WT% DEF	C Ni	Mn Cr	CHEM Mo	MICAL TESTS	S Si Cb	Cu Sn
PO# =>	817443										
KN1610149301	Nucor Steel - Kankakee Inc	68,277 105,530	14.3%	OK	-3.9%	.39	1.09	.016	.044	.20	.32
KN16101493	19/#6 Rebar 40' A615M GR420 (Gr60)	471MPa 728MP	а		.053	.16	.13	.066	.008	.001	.018
	ASTM A615/A615M-15 GR 60[420] AASHTO M31-07	104.115					- 5	57			
PO# =>	817443	/24/16									
KN1610149401	Nucor Steel - Kankakee Inc	67,771 105,567	14.6%	OK	-4.1%	.40	1.08	.016	.047	.20	.36
	40'A615M GR420 (Gr60) ASTM A615/A615M-15 GR 60[420] AASHTO M31-07 Melted 03/22/16 Rolled 03,	/24/16						58			
I hereby certify th	at the material described herein has been m	anufactured in accordance w	ath						Ann it	1	
the specifications 1.) Weld topair wa 2.) Melted and Man 1.) Mercury, Radiu have not been	and standards listed above and that it sati s not performed on this material. Ufactured in the United States. m, or Alpha source materials in any form used in the production of this material.	sfies those requirements.			QUALITY	Mat	t Turmor		Matt.	Lugar	ore

SOLD ADELPHIA	A METALS I LLC ST E	HL		R		. (CERTIFIE	ED MILL	TEST F	REPORT		-g		
SHIP ADELPHIA 411 MAIN TO: NEW PRA	GUE, MN 56071- A METALS STREET EAST GUE, MN 56071-	NUCU.	K STEEL	~~~~~	<i>EE, INC.</i>	•	Ship from MTR #: 0 Nucor Ste One Nuco Bourbonr 815-937-	i: 000112570 eel Kankak or Way nais, IL 609 3131) ee, Inc. 914		B.L. Nu Load Nu	Date: mber: mber:	24-Mar-2016 517112 271351	6
Material Safety Data	Sheets are available at www.nucor	bar.com or	by contacting	g your inside	sales repre	sentative.						NBM	G-08 January 1, 20	012
LOT #				PHY	SICAL TES	TS				CHE	MICAL TESTS	3	1 1	
HEAT #	DESCRIPTION		YIELD P.S.I.	TENSILE P.S.I.	ELONG % IN 8"	BEND	WT% DEF	C Ni	Mn Cr	P Mo	s v	Si Cb	Cu Sn	C.E.
PO# => KN1610065601 KN16100656	817132 Nucor Steel - Kankakee Inc 3/4" (.7500) Round 24' A706 ASTM A706/A706M-09b GR60	[420]	76,513 528MPa	99,415 685MPa	15.8%	ОК		.16 .17	1.12 .10	.010 .071	.021 .061 0	.22 .00	.37	.37
	TEN/YD = 1.3 Melted 02/11/16 Rolled 02/14	4/16												
		34	Smoo	fr-										
I hereby certify that the m the specifications and star 1.) Weld repair was not p 2.) Metica and Manufactu 3.) Mercury, Radium, or A have not been used in the service of the service of the service of the service of the service of the service of t	sterial described herein has been manufactured dards listed above and that it satisfies those rec efformed on this material. red in the United States. Upha source materials in any form the production of this material.	in accordance uirements.	with				QUALI	TY RANCE:	Matt Luy	ymes	Mar	# 2,	yner_	

Figure B-8. #6 (19-mm) Rebar ASTM A706 Gr. 60, Test Nos. GSH-1 and GSH-2

137

December 17, 2020 MwRSF Report No. TRP-03-387b-20

Page: 1

• \$ \$							
		9	÷				
	CUSTOMER SHIP TO	CERTIFIED MATER CUSTOMER BILL	IAL TEST REPORT	GRADE	SH	APE / SIZE	Page 1/1
🤭 Gerdau	Challman .	and Comp	any	A36	Rou	nd Bar / 1 1/4"	UELTINATON
-ML-ST PAUL 18 RED ROCK ROAD	1º.0.4:	9730		20'00"	•	9,300 LB	62138817/06
INT PAUL, MN 55119 A	SALES ORDER - 2571711/000010 · · ·	CUSTOMER	MATERIAL Nº	SPECIFICATIO	ON / DATE or REVI	SION	· · ···
ISTOMER PURCHASE ORDER NUMBER 046178M3	BILL OF LA 1332-000003	DING . DA 01395 07/	.TE 29/2015	ASTM A709-13A	A, AASHTO M270-12		
IEMICAL COMPOSITION C Min P 0.19 0.75 0.012	ş şi 0.027 0.22	ǵ Ni 0.28 0.18	Çr 0.18	Mo V 700033 0.00	Nb 203 0.001	Sn % 0.013	
ECHANICAL PROPERTIES Elong. In 31.20 8.3. 28.80 8.	и U Ich У 000 7 000 7	LIS 1.4 1.7	492 495	KSI 48.9 49.3		MP. 0	
EOMETRIC CHARACTERISTICS R:R 24.45							
ARDENABILITY DLA255 Inch 0.74		e .					
MMENTS / NOTES sterial 100% melted and rolled in the USA. Manufacta d bot rolling, has been performed of Gerdus SL Paul M as biltes. Silicon killed (deaxidiaret) steel. No weld ar gid at authiet tumperatures during processing or while	ning processes for this steel, which ma ill, 1678 Red Rock Rd., St. Paul, Mins pairment performed. Steel not expose In Gerdau St. Paul Mill's possession	ty include scrap melted in an electh acsora, USA. All products product d to mercury or any liquid alloy w Any modification to this certifice	ic we furnace of from strand hich is				
avided by Gerdau - St. Paul Mill without the expressed port shall not be reproduced except in full, without the sponsible for the inability of this material to meet speci	written consent of Gerdan St, Paul Mi expressed written consent of Gerdau S fic applications,	ill negates the validity of this test r ie, Paul Mill, Gerdau St. Paul Mill	eport. This is not	•			
411 batch 62138817/06 roll dtd 7/14/2015 mm SME SA36/SA36M-13							
					2		
The above figure area	and the stand of t	records as contained in the pe	manent records of com	any. We certify that the	se data are correct ar	d in compliance with	
specified requirements	This moterial, including the billet	s, was melted and manufacture	d in the USA. CMTR c	mplies with EN 10204	3.1. M ~~ AL	A BRANDENDURG	
, , , , , , , , , , , , , , , , , , ,	QUALITY DIRECTOR		#3 		QUA	LITY ASSURANCE MOR	

Figure B-9. 1¹/₄-in. (32-mm) Diameter Connector Pin, Test Nos. GSH-1 and GSH-2

SPS Coil Processing Tulsa 5275 Bird Creek Ave. Port of Catoosa, OK 74015

METALLURGICAL TEST REPORT

PAGE 1 of 1 DATE 04/03/2018 TIME 11:48:43 USER WF-BATCH

S 13716 H Kansas City Warehouse 401 New Century Parkway NEW CENTURY KS

т о 66031-1127

S O L D

Order 4030346	69-0010	Materi 70872	ial No. 120TM	Descri 1/4	ption 72 X 120 A36	TEMPERF	PASS STPML	Qu PL	uantity 11	Weight 6,738.600	t Custome	er Part	c	Customer PO	S 04	hip Date 4/02/2018
Heat No	. 1802456	51		Vendor E	BIG RIVER S	TEEL LLC		Chemical A	nalysis	Mill	BIG RIVER S	TEEL LLC		Melted and Ma	nufactured i	n the USA
															Produced	from Coil
Carbon 0.1900	Mangan 0.8	ese P 300	hosphorus 0.0080	Sulphur 0.0040	Silicon 0.0200	Nickel 0.0400	Chromium 0.0500	Molybdenum 0.0120	Boron 0.0001	0.1200	Aluminum 0.0280	Titanium 0.0010	Vanadium 0.0030	Columbium 0.0010	Nitrogen 0.0060	Tin 0.0042
							Mecha	nical / Physi	cal Proper	ties						
Mill Coil	No. 1802	4561-04	- -					an faith an								
	Tensile		Yield		Elong	Rckwl		Grain	Charpy		Charpy Dr	C	harpy Sz	Tempera	ature	Olsen
71:	300.000		51200.000		29.60				0		NA					
738	800.000		53300.000		26.60				0		NA					
738	800.000		51700.000		29.00				0		NA					
739	900.000		52300.000		29.80				0		NA					
ì	Batch 000	5226507	7 11 EA 6,73	8.600 LB			Batch 0005	5226477 16 EA	9,801.600 LB			Batch 0	005226496 1	6 EA 9,801.600) LB	
1	Batch 000	5226497	7 16 EA 9,80	1.600 LB			Batch 0005	5226500 16 EA	9,801.600 LB							

THE CHEMICAL, PHYSICAL, OR MECHANICAL TESTS REPORTED ABOVE ACCURATELY REFLECT INFORMATION AS CONTAINED IN THE RECORDS OF THE CORPORATION.

The material is in compliance with EN 10204 Section 4.1 Inspection Certificate Type 3.1

Figure B-10. ¼-in. (6-mm) Steel Plate, Test Nos. GSH-1 and GSH-2

Its. pluri

15Feb17_15.39	6 3	TEST	CERT	IFICA	TE	No: C	3273	K.
METALS U	SA CARBON P	LAT ROLLED.	INC	P/C No 70	019788			
FLAT ROL	LED - JEFFE	RSONVILLE		Rel	141010-001			
TEEEPPRO	KUND KUTTIE TH	47130		B/U NO C	747013-00	Cho		
Tel: 812	-288-8906	47230		Inv No		Inv		
Sold To:	(6535)			Ship To:	(000)			
ROADWAY	CONSTRUCTIO	N PRODUCTS		ROADWAY CO	ONSTRUCTION	PRODUC	TS	
A MID-PA	MAIN COMPANY	73		A MID-PAR	ALTH OTDERT			
CLARKSON	KY 42726	*		CLARKSON	KY 42726			
Tel: 270	-242-2571 F	ax: 270-243	- 9288					ě.
***********	CERTIFIC	ATE of ANAL	VETS and	TESTS	Cert	No: C	3273	
		the of the state	THE ST SALE		0.000		15Feb17	
Part No G10045	SBS					Dee		
10 GA X 61.50	00" X 92.75	DO.				197	43,901	
Ment Mumber	Tag No.	M633				Dee	Mark	
A81568	690520	1376986	1			20	4.457	
1102240	RB=<	88.8>/YLD1:	<56.1>/T	ENS=<78.8>	ELON=<26.8:			
A81568	690521	1376986				20	4,457	
N#1668	RB=<	88.8>/YLD1=	<56.1>/T	ENS=<78.8>,	ELON#<26.8:	20	4 45.7	
V01200	RB=<1	38.8>/YLD1:	<56.1>/T	ENS=<78.8>	ELON=<26.8;		4,431	
A81568	690523	1376986				20	4,457	
	RB=<1	88.8>/YLD1-	<56.1>/T	ENS=<78.8>)	BLON=<26.8:		4 457	
N01300	88= </td <td>13/6986 88.8>/YLD1=</td> <td><56.1×/T</td> <td>ENS=<78.8></td> <td>ELON=<26.8:</td> <td>20</td> <td>4,451</td> <td></td>	13/6986 88.8>/YLD1=	<56.1×/T	ENS=<78.8>	ELON=<26.8:	20	4,451	
A81568	690525	1376986				20	4,457	
101520	RB=<	88.8>/YLD1-	<56.1>/T	ENS=<78.8>/	ELON=<26.83	-		
481268	890526 RBaci	13/6986 R. R. /VLD1:	\$56.12/7	ENS-278 85	FLON= < 26 . 83	20	4,457	
A81568	690527	1376986			ADADATES	20	4,457	
	RB=<1	88.8>/YLD1-	<56.1>/T	ENS=<78.8>/	ELON=<26.8:			
A81568	690528	1376986	-55 3-10	PMC78 E-	NION 26 8.	20	4,457	
A81568	690529	1376986	e 20 - 1 3/ 1	DNS=< /8.63/	DTVORGE 50 101	17	3,788	
	RB=<1	38.8>/YLD1=	<56.1>/T	ENS=<78.8>/	ELON=<26.0;			
Sector And and the state			ST 22 11 - 52 1					
Heat Number	C 0 20-	Chemical A	nalysis		el		005-	
V01200	LEC0.205	Mn=e0.70>	Pse<0.010	> 2=<0.002;	• ST=<0.03>	M1=<0.	V<3>	
UP UPPERS PER		ITE Dates wa	a					
FURNISHED TO U	IS BY OUR SU	IPPLIER OR	RESULTED	FROM				
TESTS PERFORME	D IN A RECO	GNIZED LAB	ORATORY.					
*								
÷	-							
· Went	1 autor	2/11/	12					
fatter	and services	a serie south -	(. J					
1	2.4							
		in a start						

Page: 1Continued

111	COR'			Phon	Nuc 4631 Ghr 1(800)	or Str U.S. H Int, KY (581-38	eel Gallati ghway 42 Wi 41045-9704 153 Fax: (859	n est 1 1)557-3165		13	-
				METAL	LUR	GICA	L CERTI	FICATION	4	-	
Invoice T	o: Metals L 702 Port Jefferso	JSA-Fia I Rd nville, I	k Rolled- N 47130	Jefferson	ille Ship	To: N P 7	Aetais USA-F tolled-Jeffers fick Up 02 Port Road effersonville,	lat onvile IN 47130	Cust	Date: 9 omer No: 2 mer P.O.: C4	29/2016 7599 \$2117
Mill Orde	/ No: 2018	15-1		Custor	ner Refe	rence	No: NA		Load No:	680178	
This prod in the US	duct was n A to meet	nelted the rea	and mar quiremen	ufacture ts of:	d AST 0.02 HR S	M A101 max, S iheet S	1-15 SS Gr I 0.05 max, Si teel Bands Or	50 modified w 0.04 max rdered Size:	/ 70 ksi min k Min 0.126 ()/	m. C 0.26 ma	1) X Coll
	and the co		_						Min 3.2 (mm) X 1581 (mn	1) X Coli
CHEMICA	LANALY	SIS (Weight 5	6)							
Heat No	C	1	An	P	1	5	51	Cu	Ni	Cr	Mo
A81568	0.20	0	70	0.010	0.0	202	0.03	0.11	0.03	0.04	0.02
	Al	0	a	Nb	1	/	B	Ti	N	Sn	
	0.025	0.0	014	0.000	0.0	01	0.0001	0.001	0.0065	0.005	
MECHAN		EDTIES			-						
Coll Test	nd root	ENTIES	1 197668	E 1 1976	L neo		1	1			
Vield Stre	noth/kell)		13/030	1 10/0	200		-		+		
Vield Stre	ngin(nsi)		38	7	907		-	-			
Tennile S	trennth/ks	n	78	A .	11.6		+				
Tensile S	tranothim	ab .	54	3	562			-			
% Elonoa	tion	Par I	28	8 3	23.0		+	-			
N-Value	ALC: N		0.1	8 0	15		-	-			
N-Value R	tange		5-155	6 5-1	5%		1	-			
Hardness	(HREW)		88.	8 8	15.4						
Test Sect	ion		Mã	10	8						
Orientatio	2/B		Lon	g U	onip						
Test Meth	bor		AST	AS AS	TM						
BEND TE	ST RESUL Prientation	TS Diame of n	ter/radiu nandrel	s No. of cracks	Size o cracks	f Pass Fail					
Hist spleed cal Adarcary wear This proclean Adarch living a dotermined a	is manufacture not welled duri is in compliance onformed in acc onling alles Rect.	d brougt ng pedia e with Df cardience als methy	Nuclor Street don of the h ARS 192.12 to ASTM yes do or 25 72	Caluter don Antenai: The 5. The Bug Ar reducts Et () No. 616, 64	et contain material wa actual Au actual Au actual actual 15, and 570	veits in i n product	word nationa at the of using a fully kit met using 3 216 of recommend as com	e lime of shipmort led free grain prec phar welfted and lened in the recen	(fla mil) tos eeogaton di af Pie	Jup &	Sigel
The elongets Above bear to Band factor of band method	n arighal gwy culu kers bef na cull (cuc al a 160 degie	e knigt ettred in n accord n bent i	s 2 inches to accordance enco activitio land text spi	r ASTM Net NEN 19994 0.7436, ASTM CITAN NEN	namod an R.1 J. C293. ur Br. Dan Br.	11.87 es 25.7224 25.7224	hes for 25 test m t unity the press rows 0.81	nethod gurdeef two kapp	of and a number	Stephen S Chemical La Mechanical L steve sipple@	Stople beratory aberatory nucor.com
Trea report at 1 Your reported	will not be repri-	aduced is No boom	worpt in Tali worpt at a se	without willing About the autors	P opprovid discholory	st the un	demigned laboral	bry nategore		and the second second	
The informa above. If the copying of t by telephon	tion contains reader of th his commun e and destro	ed in thi is meas leation i y the eri	s report ma age is not t s strictly p gloat mess	y be conflid he intended of ublited. R oge That	ential info recipien you have you.	irmation L you ar receive	intended only e hereby notified this communi-	for the use of the ed that any disa nication in error	he individual or eminution, dist please notify s	entity named ibution, or is immediately	Page 1 of 1

Figure B-12. 10-gauge (4-mm) Thrie-Beam Terminal Connector, Test Nos. GSH-1 and GSH-2

Certified analysi	is
-------------------	----

Project:	RESALE				
	MILFORD, NE 68405	Use State:	NE		
		Shipped To:	NE		
	P. O. BOX 703	Document #:	1		
Customer	MIDWEST MACH & SUPPLY CO	BOL Number:	103620	Ship Date:	
Lima, OH	45801 Phn:(419) 227-1296	Customer PO:	3554		As of: 3/7/18
550 East I	Robb Ave.	Order Number:	1291981	Prod Ln Grp: 3-Guardrail (Dom)	

Qt	Part #	Description	Spec	CL	TY	Heat Code/ Heat	Yield	TS	Elg	С	Mn	Р	s	Si	Cu	Cb	Cr	Vn /	ACW
50	211G	T12/12'6/3'1.5/S			2	L30918													
			M-180	А	2	222878	64,680	81,820	25.2	0.180	0.740	0.012	0.003	0.020	0.130	0.000 0.	.070	0.002	4
50	261G	T12/25/3'1.5/S			2	L30918													
			M-180	A	2	222878	64,680	81,820	25.2	0.180	0.740	0.012	0.003	0.020	0.130	0.000 0.	.070	0.002	4
15	749G	TS 8X6X3/16X6'-0" SLEEVE	A-500			A712224	79,860	80,000	25.8	0.050	0.810	0.008 0	.002	0.030	0.090	0.000 0.0	050 (0.003	4
50	12173G	T12/6'3/4@1'6.75"/S			2	L34417													
			M-180	A	2	220022	63,060	80,170	26.6	0.180	0.720	0.012	0.002	0.020	0.090	0.000 0.	.060	0.001	4
			M-180	A	2	220023	61,250	79,890	23.1	0.190	0.730	0.011	0.005	0.010	0.120	0.000 0.	.070	0.001	4
			M-180	A	2	220390	59,530	79,920	23.0	0.190	0.730	0.009	0.003	0.020	0.110	0.000 0.	.050	0.002	4
			M-180	A	2	220022	63,060	80,170	26.6	0.180	0.720	0.012	0.002	0.020	0.090	0.000 0.	.060	0.001	4
			M-180	Α	2	220023	61,250	79,890	23.1	0.190	0.730	0.011	0.005	0.010	0.120	0.000 0.	.070	0.001	4
			M-180	Α	2	220390	59,530	79,920	23.0	0.190	0.730	0.009	0.003	0.020	0.110	0.000 0.	.050	0.002	4
60	12365G	T12/12'6/8@1'6.75/S			2	L32917													
			M-180	Α	2	216682	60,950	80,100	24.8	0.190	0.710	0.011 (0.003	0.020	0.130	0.000 0.	.070	0.002	4
			M-180	Α	2	216683	65,000	82,920	22.8	0.190	0.730	0.013 (0.002	0.020	0.130	0.000 0.	.060	0.001	4
			M-180	A	2	216682	60,950	80,100	24.8	0.190	0.710	0.011 (0.003	0.020	0.130	0.000 0.	.070	0.002	4
			M-180	A	2	216683	65,000	82,920	22.8	0.190	0.730	0.013 (0.002	0.020	0.130	0.000 0.	.060	0.001	4

Upon delivery, all materials subject to Trinity Highway Products , LLC Storage Stain Policy QMS-LG-002.

ALL STEEL USED WAS MELTED AND MANUFACTURED IN USA AND COMPLIES WITH THE BUY AMERICA ACT, 23 CFR 635.410. ALL GUARDRAIL MEETS AASHTO M-180, ALL STRUCTURAL STEEL MEETS ASTM A36 UNLESS OTHERWISE STATED.

Trinity Highway Products, LLC

Figure B-13. 12-gauge (3-mm) Thrie-Beam Section, Test Nos. GSH-1 and GSH-2

1 of 2

			Certi	fied analys	is		inity.
Trinity Hi	ghway Products, LLC						
550 East R	lobb Ave.		Or	der Number: 1291981	Prod Ln Gr	p: 3-Guardrail (Do	om)
Lima, OH 4	5801 Phn:(419) 227-1296		C	ustomer PO: 3554			Asof: 3/7/18
Customer:	MIDWEST MACH & SUPPLY CO)	В	OL Number: 103620	Ship I	Date:	1001.01110
	P. O. BOX 703		7	Document #: 1			
				Shipped To: NE			
	MILFORD, NE 68405			Use State: NE			
Project:	RESALE						
ALL COA ALL GALV	TINGS PROCESSES OF THE STEP /ANIZED MATERIAL CONFORMS W /ANIZED MATERIAL CONFORMS W	ITH ASTM A-12 ITH ASTM A-12	RE PERFORMED IN 23 (US DOMESTIC SHI 123 & ISO 1461 (INTEF	USA AND COMPLIES IPMENTS) RNATIONAL SHIPMENTS))	UY AMERICA AC	-1", 23 CFR 635.410.
FINISHED	GOOD PART NUMBERS ENDIN	3 IN SUFFIX B	3,P, OR S, ARE UNC	OATED			
BOLTS CO	OMPLY WITH ASTM A-307 SPEC	FICATIONS A	ND ARE GALVANI	ZED IN ACCORDANCE	WITH ASTM	A-153, UNLESS	OTHERWISE STATED.
State of Ohi Notary Pub Commissic	io, County of Allen. Sworn and subscribe on Expires: 3333	d before me this ? WWA	7th day of March, 2018	JAMIE L DAVIS Notary Public, State My Commission Exp March 22, 2021	of Ohie ires	Certified 2 Quality Assurar	Thinity Highway Products, L By:
		*					

BAYOU STEEL GROUP

				MAT	ERIAL CE	RTIFIC	CATION	REPORT	STEEL & PIH	PE SUP	PLY
		BAYOU STEEL G	ROUP	STEE	L & PIPE S	SUPPLY			PORT OF CAT	roosa	OK
		(LAPLACE))	555	Poyntz Ave	enue			1050 FT. GI	BSON	RD.
		138 HWY 3217		MANH	ATTAN KS	66505-3	1688		CATOOSA OK	7401	.5
		LaPlace LOUIS:	IANA 70068	USA					USA		
		Telephone (98	5) 652-4900								
ſeste	d in Acco	rdance	Sales Order	17846	57-1	Date	09/27/	2017	PO: 45002	294453	3
With:	ASTM A6		Product	Flat	bars	Cust	400066	52	Ref. 80990	0975	
			Heat NO.	L1098	512	Grade	A36529	50	Pieces 14		
			Cust.Mat.			Length	20' 00	u.	Weight 4765	.6	
			Size	F8X5/	/8X17.02	* LP					
CHE	EMICAL	MECHANICAL		TEST	1		TE	ST 2		TES	ST 3
ANA	ALYSIS	PROPERTIES	IMPERIAL		METRIC	IMPH	ERIAL	METRIC	IMPERIA	AL	METRIC
С	0.12	YIELD STRENGTH	51500 P	SI	355 MPa	523	00 PSI	361 M	Pa		
Mn	0.94	TENSILE STRENGTH	72200 PS	SI	498 MPa	727	00 PSI	501 MI	Pa		
P	0.009	ELONGATION	34	융	34 %		34 %	34	8		
S	0.020	GAUGE LENGTH	8	IN	203 mm		8 IN	203 1	nm		
Si	0.20	BEND TEST DIAMETER									
Cu	0.36	BEND TEST RESULTS									
Ni	0.18	SPECIMEN AREA									
Cr	0.22	REDUCTION OF AREA									
Mo	0.054	IMPACT STRENGTH									
Cb	0	1						· · · · · · · · · · · · · · · · · · ·			
V	0.030										
в		IMPACT STRENGTH I	MPERIAL	METRI	IC IN	TERNAL	CLEANLI	NESS GRAI	N SIZE	1	
Al		AVERAGE			SEVE	RITY		HARD	DNESS		
Sn	0.008	TEST TEMP			FREQ	UENCY		GRAI	IN PRACTICE		
N		ORIENTATION			RATI	NG		REDU	CTION RATIO		
Ti		This heat makes the	following gr	ades:	A36-14, A	52950-1	4, G40,	21-CSA50W.	CSA44W, A70	1936-1	3a ASME
<u> </u>		SA36-2010, A57250-12	a, A70950-13	a, and	d the foll	owing A	ASHTO M	270 Grades	: 36, 50, ar	1d 345	. Heat is
Ci	6.0	of Mercury contamina	tion in the	proces	ss. This m	aterial	is Hot	Rolled Ca	rbon Steel.E	SN1020	4-3.1B.
CE	0.37										

I hereby certify that the material test results presented here are from the reported heat and are correct. All tests were performed in accordance to the specification reported above. All steel is electric arc furnace melted (billets), manufactured, processed, tested in the U.S.A with satisfactory results. No weld repair was performed on this heat.

Notarized upon request:

ane Signed 2

Sworn to and subscribed before me on this 27th day of September, 2017

MARK EDWARDS, QUALITY ASSURANCE SUPERVISOR

 Notary Public
 Parish/County

 Figure B-15. %-in. (16-mm) Steel Plate, Test Nos. GSH-1 and GSH-2

Direct any questions or necessary clarifications concerning this report to the Sales Department 1-800-535-7692(USA)

Dear MWRSF UNIVERSITY OF NEBRASKA As you requested, we are providing you with the following information. We certify that, to the best of Grainger's actual knowledge, the products described below conform to the respective manufacturer's specifications as described and approved by the manufacturer.

Item #	Description	Vendor Part #	Catalog Page #	Order Quantity
30TA80	Shelving Anchor Screw, Stl, 6"L, 3/4"D, PK	7286SD-PWR	2164	3.000

She Mallin

Shea Gallup **Process Management Analyst** Compliance Team Grainger Industrial Supply

Figure B-16. ¾-in. (19-mm) Diameter Wedge Bolt, Test Nos. GSH-1 and GSH-2

CERTIFICATE OF COMPLIANCE

ROCKFORD BOLT & STEEL CO. 126 MILL STREET ROCKFORD, IL 61101 815-968-0514 FAX# 815-968-3111

CUSTOMER NAME:	TRINITY INDUSTRIES
COCI CHILLING HELL	in the boot

CUSTOMER PO: 188686

SHIPPER #: 062591 DATE SHIPPED: 02/12/2018

LOT#: B1518

SPECIFICATION: ASTM A307, GRADE A MILD CARBON STEEL BOLTS

TENSILE:	SPEC:	60,000 psi*min	RESULTS:	67,013
				67,597
HARDNESS	5:	100 max		68.50
				68.70

*Pounds Per Square Inch.

COATING: ASTM SPECIFICATION F-2329 HOT DIP GALVANIZE ROGERS GALVANIZE: B1518

CHEMICAL COMPOSITION

MILL	GRADE	HEAT#	С	Mn	Р	S	Si
CHARTER STEEL	1010	10517060	.10	.43	.007	.010	.07

QUANTITY AND DESCRIPTION:

1,000 PCS 5/8" X 2" GUARD RAIL BOLT P/N 3400G

WE HEREBY CERTIFY THE ABOVE BOLTS HAVE BEEN MANUFACTURED BY ROCKFORD BOLT AND STEEL AT OUR FACILITY IN ROCKFORD, ILLINOIS, USA. THE MATERIAL USED WAS MELTED AND MANUFACTURED IN THE USA. WE FURTHER CERIFY THAT THIS DATA IS A TRUE REPRESENTATION OF INFORMATION PROVIDED BY THE MATERIALS SUPPLIER, AND THAT OUR PROCEDURES FOR THE CONTROL OF PRODUCT QUALITY ASSURE THAT ALL ITEMS FURNISHED ON THIS ORDER MEET OR EXCEED ALL APPLICABLE TESTS, PROCESS, AND INSPECTION REQUIREMENT PER ABOVE SPECIFICATION.

STATE OF ILLINOIS COUNTY OF WINNEBAGO SIGNED BEFORE ME ON THIS

OFFICIAL SEAL MERRY F. SHANE NOTARY PUBLIC - STATE OF ILLINOIS MY COMMISSION EXPIRES OCTOBER 3. 2018

lomas

Figure B-17. ⁵/₈-in. (16-mm) Diameter Guardrail Bolt, Test Nos. GSH-1 and GSH-2

Sector 1	LIAD	1 B Bar B. B.				and the second					1	658 Cold Sort	ngs Road
	FIAR	IEK	*		20 8						Sáuli	vile, Wiscons	in 53080
CHARTER	TEFL										- delt	12621	268-2400
SIEEL	নি কিন্তু সার্চ বিব		27									1.900	137-9700
A	Division of	the Calculation	1. m									Eav 17421	
Charles Ch	arter manufactur	ng company. I	R.	CHAR	TED CT		FECT	DED	OBT			rax (202)	CODKS /
folted in LICA	Manufant	upped in 110	SA	URMT	1 141 - 21	PER I	roi	1.Lim I	OUT		1		
iciteu ili USA	manulact	HEU III US	n an			*							95
				r		Olive P	0.1	1000 S.F	the state of the s				00701
				ŀ	Plinte	Gust P.	UL					million and	100000
		2		ł	Charter S	Sales Orr	lar				Contraction of the	70	081990
				ł	Chickler C	Hea	t#	201-CC	and the factor of	Weinderter #		10	517060
	A 100 10 10 10 10	-		t		Ship Lo	1#	K 40.4	45 244R		presser a property	4	497128
Rockfo	ord Bolt & S	Steel	,	I		Gra	de		-	the last state at the	1010 A	AK FG RH	0 19/3
126 Mi	I St.			[Proce	ISS	- months		1000 10 - 10 I	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		HRS
Rockfo	ord,IL-6110	1		-		Finish Si	ZO						19/32
Kind A	nn :Linda	McComas	3	ļ	APPLICATION	Ship da	ate	11 11 12 12 12 12 12 12 12 12 12 12 12 1				. 01-1	NOV-1
hereby certily that tese requirements	the material d	lescribed her g of false, fic	rein has bee titious and i	n manufact fraudulent s	ured in acco latements or	rdance wi r entries o	ith the s n this d	pecificat	ions and a may be b	tandards I unishable	listed below as a felony i	and that it sa inder federa	atisfies I statute
ab Carlor 7200	12	- Harrison -	1111	Testre	sults of Hea	it Lot # 10	517060		and the second second	1.00	Contraction of the local distance		
HEM	C	TAN	P	S	SI	N		OR	MO	1CU	SN	¥	
Wt	.10	.43	.007	.010	.070	.04	- 1	08	01	.08	,005	100	
	AL	N	B.	T	NB								
		10000	10001	AUGI:	2001					5			
									*			×4 - 1	
										:			*
	A THE A CONTRACTOR			They the	wite of Collin	ng Lot #1	225528	1	Contraction of the		1.200 1.000		10.00 100
	8			1921193	suits of Fiolin	and and and a	100 10 10 10 10 10 10 10 10 10 10 10 10						
	×			1051103									
REDUCTION	RATIO=109:1	•		1931193									
REQUCTION I	RATIO=109:1 Manul	actured per	Charter St	ee) Quality	Manual Re	v Date 05	i/12/17	courd e		avals hu h		ase radiatio	n.
REQUCTION I pecifications: dditional Comme	RATIO=109:1 Manul Charte detect Meets Custor nts:	lactured per ar Steel cert tors in place customer a mer Docume	Charter St tiles this p to measur specificatio int = ASTM /	ee) Quality roduct is in e for the pr ns with any A29/A29M	Manual Re distinguish esence of r (applicable Revisi	v Date 05 able from adjation Charter 1 ion = 16	i/12/17 h backg within Steel ex Dated	round r our proc sception = 01-D	adiation I ress & pro us for the EC-16	evels by h ducts. following	navling proce	ess radiatio ocuments;	ņ
REQUCTION I pecifications: dditional Commen	RATIO=109:1 Manul Charte detect Meets Custor nts:	actured per ar Steel cert tors in place customer s mer Docume	Charter St tilles this p to measur specificatio mt = ASTM /	ee) Quality roduct is in e for the pr ns with any A29/A29M	Manual Re distinguish esence of r Revisi	v Date 05 able from adjation charter ion = 16	5/12/17 n backg within c Steel ex Dated	round r bur prod sceptior = 01-D	adlation I ess & pro is for the EC-15	evels by h ducts. following	naving proc	ess radiatio ocuments;	ņ
REQUCTION I pecifications: dditional Comma	RATIO=109:1 Manut Charted detect Meets Custor hts:	factured per si Steel cert cors in place customer s mer Docume	Charter St tilles this p to measur pecificatio mt = ASTM /	ee) Quality roduct is in e for the pr ns with any Aze/AzeM	Manual Re distinguish esence of r Revisi	v Date 05 able from adiation Charter S ion = 16	5/12/17 n backg within Steel e Dated	round r bur prod sceptior = 01-D	adlation I less & pro- lis for the EC-15	evels by h ducts following	naving proc	ess radiatio ocuments:	n
REQUCTION I	RATIO=109:1 Manul Charte detect Meets Custor nts:	actured per i Steel cert tors in place customer s mer Docume	Charter St iffes this p is to measur pecificatio mt = ASTM /	ee) Quality roduct is in e for the pr ns with any A29/A29M	Manual Re- distinguish esence of r applicable Hevisi	v Date 05 able from adjation Charter Sion = 16	i/12/17 h backg within Steel ex Dated	round r our proc sception = 01-D	adiation I less & pro us for the EC-15	evels by h ducts. following	naving proce	ess radiatio ocuments:	n
REOUCTION I pecifications: dditional Commen	RATIO=109:1 Manul Charte detect Meets Custor nts:	actured per in Steel cert tors in place customer s mer Docume	Charter St lifes this p to measure pecificatio m = ASTM /	ee) Qualify roduct is in e for the pr ns with any A29/A29M	Manual Re- distinguish esence of r applicable Hevisi	v Date 05 able from radiation Charter 1 fon = 16	i/12/17 n backg within c Steel e Dated	round r our prod sception = 01-D	adiation I less & pro is for the EG-15	evels by h ducts following	naving proc	ess radiatio	n
REOUCTION I pacifications: additional Comma	RATIO=109:1 Manul Chartu detect Meets Custor nts:	actured per i Steel cert tors in place customer s mer Docume	Charter St lifes this p to measure pecification m = ASTM /	ee) Quality roduct is in e for the pr ns with any A29/A29M	Manual Red distinguish esence of r applicable Hevisi	v Date 05 able from adjation Charter 3 ion = 16	i/12/17 n backg within s Steel ez Dated	round c our proc sception = 01-D	adiation I less & pro ls for the EC-15	evels by h ducts following	aving proc	ass radiatio	n
REOUCTION actilications:	RATIO=109:1 Manul Charte detect Meets Custor hts:	lactured per si Steel cert fors in place customer s mer Docume	Charter St itles tills p to measur pecificatio m = ASTM /	ee) Quality roduct is in e for the pr ns with any A29/A29M	Manual Re distinguish esence of r applicable Revisi	v Date 05 able from adjation Charter 3 fon = 16	i/12/17 n backg within Steel e Dated	round c our proc sception = 01-D	adiation I less & pro ls for the EC-15	evels by h iducts. following	navling proc	ese radiatio	n
REOUCTION actilications:	RATIO=109:1 Manul Charte datect Meets Custor hts:	lactured per ar Steel cert fors in place customer s mer Docume	Charter St itles tills p to measur specificatio nt = ASTM /	ee) Quality roduct is in e for the pr ns with any A29/A29M	Manual Re distinguish esence of r Revisi	v Date 05 able from adiation (Charter 3 ion = 16	5/12/17 n backg within o Steel e. Dated	round r bur proc sception = Q1-D	adlation I less & pro us for the EG-15	evels by h iducts. following	navling proc	ass radiatio	n
REOUCTION J acifications: Iditional Commen	RATIO=109:1 Manut Charte detect Meets Custor	lactured per si Steel cert fors in place customer s mer Docume	Charter St itles tills pi to measur specificatio nt = ASTM /	ee) Quality roduct is in a for the pr ns with any A29/A29M	Manual Re distinguish esence of r Revisi	v Date 05 able from adiation Charter 3 ion = 16	5/12/17 n backg within (Steel e. Dated	round r bur proc sception = 01-D	adlation I less & pro us for the EC-16	evels by h iducts. following	navling proc	ass radiatio	n
REOUCTION J actifications:	RATIO=109:1 Manul Charte detect Meets Custor	lactured per er Steel cert tors in place customer s mer Docume	Charter St itles tils pi e to measur specificatio nt = ASTM /	ee) Quality roduct is in a for the pr ns with any A29/A29M	Manual Re distinguish esence of r Revisi	v Date 05 able from adiation Charter 3 ion = 16	i/12/17 n backg within Steel ex Dated	round r bùr proo kceptior a 01-D	adlation I less & pro- lis for the EC-15	evels by h iducts. following	navling proc	ese radiatio	n
REOUCTION Jacilications:	RATIO=109:1 Manul Chart detect Meets Custor	lactured per er Steel cert tors in place customer s mer Docume	Charter St itles tills provide s to measur specificatio nt = ASTM /	eel Quality roduct is in e for the pr ns with any A29/A29M	Manual Re distinguish esence of r Revisi	v Date 05 able from adjation Charter 3 ion = 16	5/12/17 h backg within A Sizel ey Dated	round r bur proo keeption = 01-D	adlation I ress & pro- ris for the EC-15	evels by h iducts. following	naving proc	ess radiatio	0
REOUCTION J	RATIO=109:1 Manul Chart datect Meets Custor	lactured per er Steel cert tors in place customer s mer Docume	Charter St itles this point of measur specification nt = ASTM /	eel Quality roduct is in a for the pr ns with any A29/A29M	Manual Re distinguish esence of r pplicable Revisi	v Date 05 able from adjation Charter 3 ion = 16	5/12/17 backg within A Steel e Dated	round r bur proo kception = 01-D	adlation I ress & pro- ris for the EC-15	evels by h iducts. following	naving proc	ese radiatio	n
REOUCTION I	RATIO=109:1 Manul Chart dietect Meets Custor	actured per ar Steel cert tors in place customer a mer Docume	Charter St ities this pi o to measur specificatio mt = ASTM /	eel Quality roduct is in a for the pr ns with any A29/A29M	Manual Re distinguish esence of r applicable Revisi	v Date 05 able from adjation Charter 3 ion = 16	5/1/2/17 backg within A Steel e Dated	round r bur prod kception a 01-D	adiation I ress & pro- lis for the EC-15	evels by h ducts. following	naving proc	ese radiatio	n
REOUCTION I	RATIO=109:1 Manul Charts detect Meets Custor	actured per ar Steel cert tors in place customer a mer Docume	Charter St lifes this pi to measur specificatio mt = ASTM /	eel Quality roduct is in a for the pr ns with any A29/A29M	Manual Re distinguish esence of r applicable Revisi	v Date 05 able from adjation Charter 3 ion = 16	5/12/17 backg within a Steel e Dated	round r bur prod kception a 01-D	adiation I less & pro ls for the EC-15	evels by h ducts. following	naving proc	ese radiatio	n
REOUCTION I	RATIC=109:1 Manuf Chart detect Meets Custor	actured per ar Steel cert fors in place customer s mer Docume	Charter St lifes this pro- to measur specificatio mt = ASTM /	eel Quality roduct is in a for the pr ns with any A29/A29M	Manual Re distinguish esence of r applicable Revisi	v Date 05 able from adjation Charter Ion = 16	5/12/17 backg within a Steel e Dated	round r bur prod kception a 01-D	adiation i less & pro ls for the EC-15	evels by h iducts. following	aving proc	ess radiatio ocuments:	n
REQUCTION I	RATIC=109:1 Manuf Charta detect Meets Custor	actured per s Steel cert customer s mer Docume	Charter St lifes this put to measur specificatio nt = ASTM /	eel Quality roduct is in a for the pr ns with any A29/A29M	Manual Re distinguish esence of r applicable Revisi	v Date 05 able from adjation Charter Ion = 16	5/12/17 backg within a Steel e Dated	round r bur prod kception a 01-D	adiationi I ress & pro la for the EC-16	evels by h iducts. following	aving proc	ess radiatio ocuments:	n
REOUCTION I pecifications:	RATIO=109:1 Manu Charta detect Meets Custor nts:	actured per ar Steel cert customer s customer s mer Docume	Charter St lifes this pi to measur specificatio nt = ASTM /	eel Quality roduct is in a for the pr ns with any A29/A29M	Manual Rea distinguish esence of r applicable Revisi	v Date 05 able from adjation Charter Son = 16	5/12/17 backg within n Sizel ey Dated	round r our prod cception = 01-D	adlation I less & pro us for the EC-16	evels by h iducts. following	aving proc	ocuments;	n
REOLICTION I pacifications: dditional Comme	RATIO=109:1 Manuf Charta detect Meets Custor nts:	lactured per ar Steel cert fors in place customer s mer Docume	Charter St itles tils p to measur pecificatio m = ASTM /	ee) Quality roduct is in a for the pr ns with any A29/A29M	Manual Re distinguish esence of r applicable Revisi	v Date 05 able from adjation Charter 3 fon = 16	5/12/17 backg within n Steel e: Dated	round r our prod cception = 01-D	adlation I ress & pro us for the EC-15	evels by h iducts. following	aving proc	ocuments:	n
REQUCTION pacifications: dditional Comme	RATIO=109:1 Manul Charte detect Meets Custor	lactured per ar Steel cert fors in place customer s mer Docume	Charter St itles tills pr po to measur specificatio nt = ASTM /	ee) Quality roduci is in a for the pr ns with any A29/A29M	Manual Re distinguish esence of r Revisi	v Date 05 able from adjation : Charter : fon = 16	//12/17 backg within r Steel e: Dated	round r our proc kception = 01-D	adlation I less & pro us for the EG-15	avels by h iducts. following	avling proc	ass radiatio	n
REQUCTION I pecifications: dditional Commen	RATIO=109:1 Manu Chárt datect Meets Custor	lactured per ar Steel cert fors in place customer s mer Docume	Charter St itles tills p to measur specificatio nt = ASTM /	ee) Quality roduci is in a for the pr ns with any A29/A29M	Manual Re distinguish esence of r Revisi	v Date 05 able from adjation (Charter 16)	//12/17 backg within n Steel e: Dated	round r our proc kception = 01-D	adlation I less & pro us for the EG-15	avels by h iducts. following	oustomer d	ass radiatio ocuments:	n S orther
REOUCTION I pecifications: dditional Commen att:Source; harter Steel	RATIO=109:1 Manuf Chárt diatect Meets Custor ht5:	lactured per ar Steel cert fors in place customer s mer Docume	Charter St itles tils p to measur specificatio nt = ASTM /	ee) Quality roduct is in a for the pr ns with any A29/A29M	Manual Re distinguish esence of r pplicable Revisi	v Date 05 able from adiation (Charter 3 fon = 16	//12/17 backg within x Dated	round r our proo cception = 01-D	adlation I ress & pro- us for the EG-15	avels by h iducts following	ously dated f	ass radiatio ocuments: MTRs for thi	n S order
REOLICTION I pecifications: dditional Commen faiter Steol aukville, WI, USA	RATIO=109:1 Manu Chárt dietect Meets Custor	lactured per si Steel cert fors in place customer s mer Docume	Charter St itles tils pi to measur specificatio nt = ASTM /	ee) Quality roduct is in a for the pr ns with any A29/A29M	Manual Re distinguish esence of r (applicable Revisi	v Date 05 able from adiation (Charter 3 fon = 16	//12/17 backg within Steel Dated	round r our proo kception = 01-D	adlation I less & pro- us for the EG-15	evels by h iducts following	ously dated i	ass radiatio ocuments: MTRs for thi	n s order
REOUCTION I pacifications: dditional Commen additional Commen addi	RATIO=109:1 Manul Charte detect Meets Custor	lactured per er Steel cert tors in place customer s mer Docume	Charter St ifles tils pi e to measur specificatio nt = ASTM /	ee) Quality roduct is in e for the pr ns with any A29/A29M	Manual Re distinguish esence of r applicable Revisi	v Date 05 able from adiation : Charter : ion = 16	//12/17 biackg within Dated	round r bur proo kception s 01-D	adlation I less & pro- us for the EC-15	s all previo	ously dated I	ese radiatio ocuments: MTRs for thi	n S order 3
REQUCTION J pecifications: dditional Comment additional Comment ett Source; harter Steel aukville, WI, USA	RATIO=109:1 Manuf Charte ditect Meets Custor nts:	actured per er Steel cert tors in place customer s mer Docume	Charter St lifes this pi e to measur specificatio nt = ASTM /	eel Quality roduci is in e for the pr ns with any A29/A29M	Manual Re distinguish esonce of r applicable Revisi	v Date 05 able from adiation : Charter 3 ion = 16	i/12/17 biackg within Steele Dated	is MTR	ediation I less & pro- lis for the EC-15 supersede ban Piñ	s all previo	ously dated I Barnard Vigr. of Qual artersteel.co : 11/01/201	ess radiatio ocuments: MTRs for thi by Assurance 7	n S order a
REDUCTION I pecifications: dditional Comment fait Source; farter Steel aukville, WJ, USA rip: 4189961	RATIO=109:1 Manul Chart detect Meets Custor	actured per ar Steel cert fors in place customer s mer Docume	Charter St lifes this pass pecification mt = ASTM /	eel Quality roduct is in a for the pr ns with any A29/A29M	Manual Re distinguish esence of r applicable Revisi	v Date 05 able from adjation Charter 3 ion = 16	i/12/17 backg within Steele Dated	is MTR	ediation I ress & pro- la for the EC-15 supersede bar bar Prin	evels by h iducts. following s all previ Division h nardJ@ohn ned Date	ously dated arresteel.co : 11/01/201	ess radiatio ocuments: MTRs for thi ty Assuranc m 7	n S order

Figure B-18. 5%-in. (16-mm) Diameter Guardrail Bolt, Test Nos. GSH-1 and GSH-2

DECKER MANUFACTURING CORPORATION 703 N. Clark Street A true N20 Lister 49275 P: 517,629,3955 • F: 517,629,3535

HIGHWAY - FINISHU GREGORY FINISHE CANTON, OH 44710	ed goods Ed goods			Printed: 11/13/ November	2017 11:13:54 AM 13, 2017
- 45	P	RODUCT MA	TERIAL CERTIFICATION		
CUSTOMER PART CUSTOMER P.O. N	NUMBER : IUMBER :	1000G 37992		INVOICE:	142381
LOT NUMBER:	17-52-038		DESCRIPTION:	5/8 GRD RAIL NUT	.031
DATE:	Aug 27, 2017		QUANTITY:	104,000	
HEAT NUMBER:	10508780		MATERIAL SUPPLIER:	CHARTER STEEL	
MATERIAL:	STEEL - C1010	0			

We certify the product above was manufactured at DECKER MANUFACTURING CORPORATION from the specified raw material and that said product is certified to be manufactured, randomly sampled, tested and/or inspected and conforms to applicable specifications. We additionally certify that said raw material was domestically manufactured in the United States of America and that said raw material was manufactured free of mercury contamination.

The items were processed under the Decker Quality Manual. The current revision is dated January 12, 2005 No welding was performed.

This document accurately represents values and statements provided by our suppliers accredited testing facility. The original metallurgical test report shall be retained on file by DECKER MANUFACTURING CORPORATION for a period of not less than (10) years.

CHEMICAL ANALYSIS BY MATERIAL SUPPLIER

CARBON :	.09	PHOSPHOROUS :	.006
MANGANESE :	.47	SULFUR :	.008
		DECKER MANU	FACTURING CORPORATION
		Russel L. Wilson	e Manager
		County Assorance	a induagei
The above results pertain	in only to the items tested. This report shall not be rep	produced except in full without	the approval of this testing facility.

Figure B-19. ⁵/₈-in. (16-mm) Diameter Guardrail Nut, Test Nos. GSH-1 and GSH-2

CHARTER STEEL A Didion of Creater Manufecturing Company, Inc.

EMAIL

CHARTER STEEL TEST REPORT

1658 Cold Springs Road Saukville, Wisconsin 53080 (262) 268-2400 1-800-437-8789 Fax (262) 268-2570

Melted in USA Manufactured in USA

Cust P.O. 50366-1709 1.125 1010 Customer Part # Charter Sales Order 30137947 Heat # 10508780 Ship Lot # 4486179 1010 A AK FG RHQ 1-1/8 Grade Process Decker Manufacturing Corp. HRCC 703 N. Clark St. **Finish Size** 1-1/8 27-AUG-17 Albion, MI-49224 Ship date I hereby certify that the material described herein has been manufactured in accordance with the specifications and standards listed below and that it satisfies these requirements. The recording of false, licitious and fraudulent statements or entries on this document may be punishable as a felony under federal statute. Test results of Heat Lot # 10508780 Lab Code: 7388 CHEM C MN S SI N CR .08 MO CU SN ٧ %W2 .47 300. .008 .080 .04 .01 .08 .006 .001 NB AL .022 TI N B .0070 .0001 .001 Test results of Rolling Lot # 1221251 Min Value # of Tests Max Value Mean Value 60 1.127 .005 RB LAB = 0358-02 ROCKWELL B (HRBW) 61 59 ROD SIZE (Inch) ROD GUT OF ROUND (Inch) 1.122 1.131 16 8 REDUCTION RATIO=30:1 Manufactured per Charter Steel Quality Manual Rev Date 05/12/17 Charter Steel certifies this product is indistinguishable from background radiation levels by having process radiation Specifications: detectors in place to measure for the presence of radiation within our process & products. Meets customer specifications with any applicable Charter Steel exceptions for the following customer documents: Customer Document = ASTM A29/A29M Revision = 16 Dated = 01-DEC-16 Additional Comments: Mell Source: This MTR supersedes all previously dated MTRs for this order Charter Steel JanuaBarnard Saukville, WI, USA Janice Barnard Division Mgr. of Quality Assurance barnardJ@chartersteel.com ACCREDITED Testing Laboratory Trip: 1166878 Printed Date : 08/27/2017 Page 1 of 2

Figure B-20. %-in. (16-mm) Diameter Guardrail Nut, Test Nos. GSH-1 and GSH-2

Figure B-21. ¾-in. (19-mm) Diameter, 2-in. (51-mm) Long Heavy Hex Head Bolt and Nut, Test Nos. GSH-1 and GSH-2

TEST REPORT

USS FLAT WASHER, HDG

CUSTOMER:			DATE: 2017-12-28						
PO NUMBER: 480006711		MFG LO	MFG LOT NUMBER: M-SWE0412140-6						
SIZE: 3/4		PART NO: 1133186							
HEADMARKS:			QNTY:	7,500	PCS				
DIMENSIONAL INSPECTION	S	SPEC	IFICATION: ASME B1	8.21.1(20	009)				
CHARACTERISTICS	SPECII	FIED	ACTUAL RESULT	ACC.	REJ.				
*****	*************	*****	*****	******	******				
APPEARANCE	ASTM F	788-07	PASSED	100	0				
OUTSIDE DIA	1.993-	2.030	2.001-2.004	8	0				
INSIDE DIA	0.805-	0.842	0.833-0.836	8	0				
THICKNESS	0.122-	0.177	0.126-0.131	8	0				
	TM A153 class	Mip 0 0017"	Min 0 0019 In	8	0				
	Compliant	Mill 0.0017		Ū	v				
ALL TESTS IN ACCORDANCE V WE CERTIFY THAT THIS DAIA SUPPLIER AND OUR TESTING MFG ISO 9001:2015 SGS Certific	VITH THE METHOD IS A TRUE REPRES LABORATORY. cate # HK04/0105	S PRESCRIBED IN 1 SENTATION OF INFO	THE APPLICABLE ASTM S DRMATION PROVIDED B	SPECIFIC Y THE MA	ATION. ATERIAL				
			全验专用章 QUANLITY CONTROL		_				
		(SIGNA (NAM	TURE OF Q.A. LAB I IE OF MANUFACTUR	VIGR.) ER)					

IFI & MORGAN LTD.

ADDRESS: Chang'an North Road, Wuyuan Town, Haiyan, Zhejiang, China

Figure B-22. ¾-in. (19-mm) Diameter Plain Flat Washer, Test Nos. GSH-1 and GSH-2

Appendix C. Vehicle Deformation Records

Date: Year:	6/28/ 20	/2018)11			Test Name: Make:	GS Do	H-1 dge			VIN: Model:	1D7R Ram	B1GP6BS5 1500 Qua	53873 d Cab
					VE	HICLE DE	FORMATION AN - SET 1	NC					
	POINT	Pretest X (in.)	Pretest Y (in.)	Pretest Z (in.)	Posttest X (in.)	Posttest Y (in.)	Posttest Z (in.)	∆X ^A (in.)	∆Y ^A (in.)	∆Z ^A (in.)	Total ∆ (in.)	Crush ^B (in.)	Directions for Crush ^c
	1	57.1460	-7.6147	-1.6978	56.9031	-8.4487	-1.3764	0.2429	-0.8340	0.3214	0.9262	0.4029	X, Z
	2	59.3411	-11.5870	-0.4601	55.9962	-12.3718	-2.3088	3.3449	-0.7848	-1.8487	3.9015	3.3449	X
_	3	59.6154	-15.1736	-0.5795	54.3605	-14.9119	-3.9867	5.2549	0.2617	-3.4072	6.2683	5.2549	X
- 1	4	59.1791	-17.9480	-1.0035	53.3244	-17.4146	-4.8651	5.8547	0.5334	-3.8616	7.0338	5.8547	X
Z VAI	5	58.2258	-20.5800	-2.2762	53.8901	-20.5270	-4.8364	4.3357	0.0530	-2.5602	5.0354	4.3357	X
ШШХ	6	54.2366	-7.3605	1.9091	53.6732	-7.7778	2.1803	0.5634	-0.4173	0.2712	0.7517	0.6253	X, Z
은 뿐 -	7	54.3793	-11.6005	1.9052	52.2504	-11.6146	1.3445	2.1289	-0.0141	-0.5607	2.2015	2.1289	X
1	8	54.5684	-14.9041	1.8165	51.0579	-14.6516	0.6385	3.5105	0.2525	-1.1780	3.7115	3.5105	X
	9	54.6228	-18.3947	1.7987	50.8734	-18.1029	0.1639	3.7494	0.2918	-1.6348	4.1007	3.7494	X
	10	54.8620	-21.8933	1.6626	52.0019	-21.4064	0.0887	2.8601	0.4869	-1.5739	3.3007	2.8601	X
	11	47.9699	-7.2439	5.1145	48.0767	-7.2995	6.0036	-0.1068	-0.0556	0.8891	0.8972	0.8891	Z
	12	48.1285	-11.5130	5.0513	48.1653	-11.5115	6.3528	-0.0368	0.0015	1.3015	1.3020	1.3015	Z
	13	48,1610	-14.8942	5.0498	47,9080	-14,9103	5.8886	0.2530	-0.0161	0.8388	0.8763	0.8388	Z
	14	48.3016	-18.3919	5.0236	47.8417	-18.4307	5.7091	0.4599	-0.0388	0.6855	0.8264	0.6855	Z
	15	48.3519	-21.8684	5.0173	47.8385	-21.8808	5.9581	0.5134	-0.0124	0.9408	1.0718	0.9408	Z
	16	44.4312	-7.4425	5.2128	44.5148	-7.3664	5.9394	-0.0836	0.0761	0.7266	0.7353	0.7266	Z
	17	44.4961	-10.1990	5.1932	44.5895	-10.1192	5.9269	-0.0934	0.0798	0.7337	0.7439	0.7337	Z
-	18	44.5856	-14.4194	5.1678	44.7484	-14.3954	5.9246	-0.1628	0.0240	0.7568	0.7745	0.7568	Z
AP	19	44.5052	-17.7049	5.1888	44.7246	-17.7208	5.9487	-0.2194	-0.0159	0.7599	0.7911	0.7599	Z
A C	20	44.5558	-22.4507	5.1462	44.7694	-22.4665	6.1728	-0.2136	-0.0158	1.0266	1.0487	1.0266	Z
2 O	21	39.9347	-6.4836	5.3228	40.0267	-6.5111	5.9448	-0.0920	-0.0275	0.6220	0.6294	0.6220	Z
C	22	39.9988	-9.3701	5.5539	40.0977	-9.3528	6.2052	-0.0989	0.0173	0.6513	0.6590	0.6513	Z
ш	23	40.0381	-13.6381	5.4148	40.1518	-13.7357	6.0347	-0.1137	-0.0976	0.6199	0.6378	0.6199	Z
	24	40.0164	-18.3064	5.3711	40.2273	-18.3674	6.1755	-0.2109	-0.0610	0.8044	0.8338	0.8044	Z
	25	40.2800	-22.3070	5.3573	40.4762	-22.3500	6.3159	-0.1962	-0.0430	0.9586	0.9794	0.9586	Z
	26	35.5660	-6.7220	5.3367	35.6447	-6.7819	5.8782	-0.0787	-0.0599	0.5415	0.5505	0.5415	Z
	27	35.5357	-9.0873	5.4621	35.5531	-9.0510	6.0309	-0.0174	0.0363	0.5688	0.5702	0.5688	Z
	28	35.5084	-13.0360	5.3844	35.5890	-13.1154	5.9540	-0.0806	-0.0794	0.5696	0.5807	0.5696	Z
	29	35.4227	-17.3358	5.3502	35.6062	-17.4637	5.9901	-0.1835	-0.1279	0.6399	0.6779	0.6399	Z
	30	35.6781	-21.5112	5.3665	35.8893	-21.5669	5.9145	-0.2112	-0.0557	0.5480	0.5899	0.5480	Z

^B Crush calculations that use multiple directional components will disregard components that are negative and only include positive values where the component is deforming inward toward the occupant compartment.

^c Direction for Crush column denotes which directions are included in the crush calculations. If "NA" then no intrusion is recorded, and Crush will be 0.

Figure C-1. Floor Pan Deformation Data – Set 1, Test No. GSH-1

Date: Year:	6/28/ 20	/2018)11			Test Name: Make:	GS Do	H-1 dge			VIN: Model:	1D7R Ram	B1GP6BS5 1500 Qua	53873 d Cab
					VE	HICLE DE	FORMATION AN - SET 2	ON					
	POINT	Pretest X (in.)	Pretest Y (in.)	Pretest Z (in.)	Posttest X (in.)	Posttest Y (in.)	Posttest Z (in.)	∆X ^A (in.)	∆Y ^A (in.)	∆Z ^A (in.)	Total ∆ (in.)	Crush ^B (in.)	Directions for Crush ^C
	1	60.3898	-26.1285	-5.6751	59.9148	-26.9757	-5.2241	0.4750	-0.8472	0.4510	1.0709	0.6550	X.Z
	2	62.6418	-30.0677	-4.4338	59.0730	-30,9101	-6.1701	3.5688	-0.8424	-1.7363	4.0572	3.5688	X
	3	62.9712	-33,6496	-4.5548	57,4854	-33,4709	-7.8625	5,4858	0.1787	-3.3077	6,4083	5,4858	X
- 1	4	62.5785	-36,4300	-4.9819	56.4924	-35.9872	-8.7521	6.0861	0.4428	-3.7702	7.1729	6.0861	X
Z VA	5	61.6691	-39.0754	-6.2591	57.1056	-39.0907	-8.7273	4.5635	-0.0153	-2.4682	5.1882	4.5635	X
ШШХ	6	57.4667	-25.9213	-2.0763	56.6558	-26.3626	-1.6834	0.8109	-0.4413	0.3929	1.0033	0.9011	X,Z
⊙≞))	7	57.6741	-30,1586	-2.0827	55.2965	-30.2187	-2.5355	2.3776	-0.0601	-0.4528	2.4211	2.3776	X
~ ~	8	57.9139	-33.4589	-2.1731	54.1543	-33.2719	-3.2547	3.7596	0.1870	-1.0816	3.9166	3.7596	X
	9	58.0216	-36.9482	-2.1931	54.0253	-36.7245	-3.7380	3.9963	0.2237	-1.5449	4.2904	3.9963	X
	10	58.3146	-40.4427	-2.3308	55.2046	-40.0102	-3.8144	3.1100	0.4325	-1.4836	3.4728	3.1100	X
	11	51,1899	-25.9026	1.1111	51.0322	-25.9788	2.1106	0.1577	-0.0762	0.9995	1.0147	0.9995	Z
	12	51.4137	-30.1688	1.0455	51.1834	-30.1897	2.4508	0.2303	-0.0209	1.4053	1.4242	1.4053	Z
	13	51.4978	-33.5490	1.0419	50.9806	-33.5909	1.9776	0.5172	-0.0419	0.9357	1.0699	0.9357	Z
	14	51.6919	-37.0442	1.0137	50.9691	-37.1115	1.7899	0.7228	-0.0673	0.7762	1.0628	0.7762	Z
	15	51.7953	-40.5195	1.0052	51.0174	-40.5618	2.0312	0.7779	-0.0423	1.0260	1.2883	1.0260	Z
	16	47.6543	-26.1553	1.1992	47.4721	-26.0999	2.0270	0.1822	0.0554	0.8278	0.8494	0.8278	Z
	17	47.7613	-28.9105	1.1780	47.5890	-28.8512	2.0087	0.1723	0.0593	0.8307	0.8505	0.8307	Z
7	18	47.9153	-33.1290	1.1499	47.8134	-33.1245	1.9977	0.1019	0.0045	0.8478	0.8539	0.8478	Z
AP	19	47.8850	-36.4153	1.1686	47.8403	-36.4499	2.0142	0.0447	-0.0346	0.8456	0.8475	0.8456	Z
с Н Н	20	48.0081	-41.1598	1.1230	47.9565	-41.1949	2.2279	0.0516	-0.0351	1.1049	1.1067	1.1049	Z
SO IS	21	43.1434	-25.2652	1.2970	42.9715	-25.3133	2.0099	0.1719	-0.0481	0.7129	0.7349	0.7129	Z
LC LC	22	43.2509	-28.1506	1.5263	43.0846	-28.1542	2.2644	0.1663	-0.0036	0.7381	0.7566	0.7381	Z
ш	23	43.3557	-32.4173	1.3845	43.2067	-32.5354	2.0844	0.1490	-0.1181	0.6999	0.7253	0.6999	Z
	24	43.4055	-37.0854	1.3377	43.3522	-37.1657	2.2153	0.0533	-0.0803	0.8776	0.8829	0.8776	Z
	25	43.7301	-41.0815	1.3219	43.6613	-41.1443	2.3481	0.0688	-0.0628	1.0262	1.0304	1.0262	Z
	26	38.7788	-25.5703	1.2983	38.5946	-25.6510	1.9190	0.1842	-0.0807	0.6207	0.6525	0.6207	Z
	27	38.7842	-27.9359	1.4220	38.5369	-27.9216	2.0661	0.2473	0.0143	0.6441	0.6901	0.6441	Z
	28	38.8175	-31.8844	1.3416	38.6354	-31.9847	1.9804	0.1821	-0.1003	0.6388	0.6718	0.6388	Z
	29	38.7975	-36.1850	1.3042	38.7189	-36.3323	2.0069	0.0786	-0.1473	0.7027	0.7223	0.7027	Z
	30	39.1166	-40.3560	1.3185	39.0652	-40.4305	1.9235	0.0514	-0.0745	0.6050	0.6117	0.6050	Z

^B Crush calculations that use multiple directional components will disregard components that are negative and only include positive values where the component is deforming inward toward the occupant compartment.

^c Direction for Crush column denotes which directions are included in the crush calculations. If "NA" then no intrusion is recorded, and Crush will be 0.

Figure C-2. Floor Pan Deformation Data – Set 2, Test No. GSH-1

Date: Year:	7/27/ 20	/2018 013			Test Name: Make:	GS Do	H-2 dge			VIN: Model:	1CRI	R6FTXDS5 Ram 1500	75838
					VE	HICLE DE	FORMATIC AN - SET 1	N					
_	POINT	Pretest X (in.)	Pretest Y (in.)	Pretest Z (in.)	Posttest X (in.)	Posttest Y (in.)	Posttest Z (in.)	∆X ^A (in.)	∆Y ^A (in.)	∆Z ^A (in.)	Total ∆ (in.)	Crush ^B (in.)	Directions for Crush ^c
	1	57.8900	-20.8990	-1.6667	55.3731	-19.2158	-3.0912	2.5169	1.6832	-1.4245	3.3462	2.5169	X
	2	59.0216	-17.8270	-0.8558	57.6931	-17.5045	-1.2684	1.3285	0.3225	-0.4126	1.4280	1.3285	X
!	3	59.2342	-15.1622	-0.9692	58.5882	-15.1827	-0.6759	0.6460	-0.0205	0.2933	0.7098	0.7095	X, Z
- U	4	59.0287	-12.0021	-0.8802	58.6697	-12.0133	-0.4893	0.3590	-0.0112	0.3909	0.5309	0.5307	X, Z
A A V	5	57.0319	-9.4376	-1.6166	56.8023	-9.2697	-1.1727	0.2296	0.1679	0.4439	0.5272	0.4998	X, Z
ШШ Х	6	53.6167	-21.8976	2.0498	51.3822	-20.5484	0.8733	2.2345	1.3492	-1.1765	2.8631	2.2345	X
오별	7	53.5165	-18.5508	2.1059	52.8155	-18.1318	2.5584	0.7010	0.4190	0.4525	0.9337	0.8344	X, Z
3	8	53.4148	-15.4708	2.1649	53.1737	-15.1190	3.0151	0.2411	0.3518	0.8502	0.9512	0.8837	X, Z
	9	53.4453	-12.3900	2.1573	53.2332	-12.1181	2.8471	0.2121	0.2719	0.6898	0.7712	0.7217	X, Z
	10	53.5198	-9.5578	2.1255	53.3536	-9.2808	2.6483	0.1662	0.2770	0.5228	0.6145	0.5486	X, Z
	11	50.5485	-22.2374	3.6929	49.0049	-21.1750	3.3856	1.5436	1.0624	-0.3073	1.8989	-0.3073	Z
	12	50.5309	-18.9595	3.6995	50.1428	-18.4413	4.5903	0.3881	0.5182	0.8908	1.1012	0.8908	Z
	13	50.5046	-15.8163	3.7200	50.3790	-15.3702	4.7921	0.1256	0.4461	1.0721	1.1680	1.0721	Z
	14	50.5950	-13.3005	3.6862	50.4093	-12.8307	4.5820	0.1857	0.4698	0.8958	1.0284	0.8958	Z
	15	50.5454	-9.9744	3.7260	50.3771	-9.5118	4.3940	0.1683	0.4626	0.6680	0.8298	0.6680	Z
	16	46.9732	-22.4751	5.0130	46.6652	-21.9074	6.3768	0.3080	0.5677	1.3638	1.5090	1.3638	Z
	17	46.9864	-19.3271	5.0227	46.8313	-18.7444	6.2711	0.1551	0.5827	1.2484	1.3864	1.2484	Z
7	18	46.9476	-16.6303	5.0324	46.8115	-16.1403	6.1166	0.1361	0.4900	1.0842	1.1975	1.0842	Z
Al	19	46.8663	-13.5456	5.0502	46.7025	-13.0290	5.9209	0.1638	0.5166	0.8707	1.0256	0.8707	Z
2 21	20	47.0640	-9.9705	5.0545	46.9188	-9.5048	5.6950	0.1452	0.4657	0.6405	0.8051	0.6405	Z
IO [7]	21	43.3159	-22.9453	5.0795	43.2177	-22.3720	6.8948	0.0982	0.5733	1.8153	1.9062	1.8153	Z
U.	22	43.3175	-19.1575	5.0844	43.2148	-18.6935	6.5019	0.1027	0.4640	1.4175	1.4950	1.4175	Z
ш.	23	43.4080	-16.3010	5.0915	43.2404	-15.7864	6.1803	0.1676	0.5146	1.0888	1.2159	1.0888	Z
	24	43.5235	-13.5498	5.0970	43.4062	-12.9894	5.9534	0.1173	0.5604	0.8564	1.0302	0.8564	Z
	25	43.4414	-9.7446	5.1036	43.2965	-9.2824	5.6846	0.1449	0.4622	0.5810	0.7564	0.5810	Z
	26	37.3182	-23.3993	5.1224	37.3196	-22.9068	6.5958	-0.0014	0.4925	1.4734	1.5535	1.4734	Z
	27	37.4651	-19.4002	5.1124	37.4000	-18.9618	6.3931	0.0651	0.4384	1.2807	1.3552	1.2807	Z
	28	37.5081	-16.0369	5.1196	37.3641	-15.5672	6.0392	0.1440	0.4697	0.9196	1.0426	0.9196	Z
	29	37.4714	-12.7311	5.1300	37.3045	-12.2415	5.7174	0.1669	0.4896	0.5874	0.7827	0.5874	Z
	30	37.5456	-9.4394	5.1398	37.4409	-9.0041	5.6016	0.1047	0.4353	0.4618	0.6432	0.4618	Z

^B Crush calculations that use multiple directional components will disregard components that are negative and only include positive values where the component is deforming inward toward the occupant compartment.

^c Direction for Crush column denotes which directions are included in the crush calculations. If "NA" then no intrusion is recorded, and Crush will be 0.

Figure C-3. Floor Pan Deformation Data – Set 1, Test No. GSH-2

Date: Year:	7/27	/2018 013			Test Name: Make:	GS Do	H-2 dge			VIN: Model:	1CRI	R6FTXDS5 Ram 1500	75838
					VE	HICLE DE	FORMATIC AN - SET 2	NC					
	POINT	Pretest X (in.)	Pretest Y (in.)	Pretest Z (in.)	Posttest X (in.)	Posttest Y (in.)	Posttest Z (in.)	∆X ^A (in.)	ΔY ^A (in.)	∆Z ^A (in.)	Total ∆ (in.)	Crush ^B (in.)	Directions for Crush ^c
	1	59.6170	-40.9259	-5.2987	57.3181	-39.4971	-6.9655	2.2989	1.4288	-1.6668	3.1788	2.2989	X
	2	60.7793	-37.8681	-4.4773	59.6540	-37.8140	-5.1367	1.1253	0.0541	-0.6594	1.3054	1.1253	X
	3	61.0252	-35.2061	-4.5880	60.5767	-35.5034	-4.5431	0.4485	-0.2973	0.0449	0.5400	0.4507	X, Z
- U	4	60.8575	-32.0437	-4.4996	60.6979	-32.3351	-4.3586	0.1596	-0.2914	0.1410	0.3609	0.2130	X, Z
A > U	5	58.8982	-29.4549	-5.2517	58.8676	-29.5685	-5.0498	0.0306	-0.1136	0.2019	0.2337	0.2042	X, Z
ШШ×	6	55.3012	-41.8732	-1.6180	53.2983	-40.7759	-3.0125	2.0029	1.0973	-1.3945	2.6759	2.0029	X
입품 [7	55.2413	-38.5255	-1.5617	54.7569	-38.3764	-1.3247	0.4844	0.1491	0.2370	0.5595	0.5393	X, Z
3	8	55.1767	-35.4445	-1.5024	55.1520	-35.3680	-0.8691	0.0247	0.0765	0.6333	0.6384	0.6338	X, Z
	9	55.2447	-32.3643	-1.5087	55.2501	-32.3682	-1.0391	-0.0054	-0.0039	0.4696	0.4696	0.4696	Z
	10	55.3540	-29.5332	-1.5389	55.4072	-29.5329	-1.2397	-0.0532	0.0003	0.2992	0.3039	0.2992	Z
	11	52.2155	-42.1760	-0.0006	50.9054	-41.3703	-0.5072	1.3101	0.8057	-0.5066	1.6193	-0.5066	Z
	12	52.2378	-38.8982	0.0070	52.0742	-38.6503	0.6991	0.1636	0.2479	0.6921	0.7531	0.6921	Z
	13	52.2496	-35.7549	0.0283	52.3488	-35.5823	0.8993	-0.0992	0.1726	0.8710	0.8935	0.8710	Z
	14	52.3710	-33.2404	-0.0038	52.4120	-33.0435	0.6874	-0.0410	0.1969	0.6912	0.7199	0.6912	Z
	15	52.3615	-29.9140	0.0368	52.4226	-29.7247	0.4969	-0.0611	0.1893	0.4601	0.5013	0.4601	Z
	16	48.6268	-42.3705	1.2897	48.5473	-42.0705	2.4773	0.0795	0.3000	1.1876	1.2275	1.1876	Z
	17	48.6783	-39.2229	1.3006	48.7539	-38.9100	2.3697	-0.0756	0.3129	1.0691	1.1165	1.0691	Z
-	18	48.6722	-36.5258	1.3109	48.7677	-36.3060	2.2133	-0.0955	0.2198	0.9024	0.9337	0.9024	Z
AL	19	48.6284	-33.4404	1.3292	48.6989	-33.1937	2.0149	-0.0705	0.2467	0.6857	0.7321	0.6857	Z
n 61	20	48.8695	-29.8680	1.3364	48.9606	-29.6727	1.7871	-0.0911	0.1953	0.4507	0.4996	0.4507	Z
Ö 🖸	21	44.9636	-42.7961	1.3257	45.0925	-42.4908	2.9848	-0.1289	0.3053	1.6591	1.6919	1.6591	Z
P P	22	45.0113	-39.0087	1.3320	45.1376	-38.8129	2.5892	-0.1263	0.1958	1.2572	1.2786	1.2572	Z
ш.	23	45.1365	-36.1534	1.3408	45.2012	-35.9067	2.2655	-0.0647	0.2467	0.9247	0.9592	0.9247	Z
	24	45.2855	-33.4039	1.3482	45.4032	-33.1122	2.0371	-0.1177	0.2917	0.6889	0.7573	0.6889	Z
	25	45.2497	-29.5980	1.3555	45.3415	-29.4043	1.7652	-0.0918	0.1937	0.4097	0.4624	0.4097	Z
	26	38.9607	-43.1770	1.3187	39.1891	-42.9510	2.6677	-0.2284	0.2260	1.3490	1.3867	1.3490	Z
	27	39.1563	-39.1800	1.3113	39.3203	-39.0074	2.4624	-0.1640	0.1726	1.1511	1.1755	1.1511	Z
	28	39.2403	-35.8174	1.3201	39.3286	-35.6129	2.1060	-0.0883	0.2045	0.7859	0.8169	0.7859	Z
	29	39.2438	-32.5114	1.3313	39.3123	-32.2870	1.7815	-0.0685	0.2244	0.4502	0.5077	0.4502	Z
	30	39.3579	-29.2209	1.3428	39.4902	-29.0516	1.6637	-0.1323	0.1693	0.3209	0.3862	0.3209	Z

^B Crush calculations that use multiple directional components will disregard components that are negative and only include positive values where the component is deforming inward toward the occupant compartment.

^c Direction for Crush column denotes which directions are included in the crush calculations. If "NA" then no intrusion is recorded, and Crush will be 0.

Figure C-4. Floor Pan Deformation Data – Set 2, Test No. GSH-2

rear.	20	/11			Wake.		FORMATIC	л		woder.	Rall	1500 Quad	Cap
					IN	TERIOR C	RUSH - SE	Т1					
	POINT	Pretest X (in.)	Pretest Y (in.)	Pretest Z (in.)	Posttest X (in.)	Posttest Y (in.)	Posttest Z (in.)	∆X ^A (in.)	∆Y ^A (in.)	∆Z ^A (in.)	Total ∆ (in.)	Crush ^B (in.)	Direction for Crush ^c
	1	43.6356	-19.3788	-28.8045	43.8975	-19.6834	-28.4517	-0.2619	-0.3046	0.3528	0.5346	0.5346	X, Y, Z
тÑ	2	43.4904	-7.1421	-28.5003	43.6833	-7.4835	-28.1568	-0.1929	-0.3414	0.3435	0.5213	0.5213	X, Y, Z
ASH -	3	43.7793	4.1506	-27.8679	44.0140	3.8639	-27.5280	-0.2347	0.2867	0.3399	0.5028	0.5028	X, Y, Z
0×	4	39.81/1	-20.1101	-13.3033	39,8161	-20.3141	-12.9034	-0.0030	-0.2040	0.3219	0.3646	0.3646	X, Y, Z
ŀ	6	37.3894	4.5516	-13.4497	37,4500	4.3196	-13.2472	-0.0606	0.2320	0.2025	0.3139	0.3139	X, Y, Z
	7	52.6862	-27.1852	-3.1461	52.4980	-26.2859	-2.7274	0.1882	0.8993	0.4187	1.0097	0.8993	Y
ΞΞε [8	48.9673	-27.2384	-1.4329	48.7539	-26.2694	-1.1297	0.2134	0.9690	0.3032	1.0375	0.9690	Y
2 A	9	49.0377	-27.2502	-5.0678	48.8765	-26.5169	-4.7041	0.1612	0.7333	0.3637	0.8343	0.7333	Y
Ц	10	16.4523	-30.4722	-16.0648	16.3047	-31.1529	-15.5066	0.1476	-0.6807	0.5582	0.8926	-0.6807	Y
	11	30.1158	-30.6523	-15.6363	29.9873	-31.0999	-15.0767	0.1285	-0.4476	0.5596	0.7280	-0.4476	Y
382	12	39.3233	-29.7448	-16.3665	17 6403	-30.0268	-15.8359	0.1341	-0.2820	0.03608	0.5157	-0.2820	Y
Ϋ́Ω -	14	28 5336	-30 2175	0.7622	28,3363	-29.5040	1 2892	0.2398	0.2000	0.5098	0.7712	0.2000	Y
2	15	36.8824	-30.2127	0.7404	36.6486	-29.4919	1.3500	0.2338	0.7208	0.6096	0.9725	0.7208	Ý
	16	27.3343	-16.8088	-44.4221	27.4828	-17.3010	-44.0664	-0.1485	-0.4922	0.3557	0.6252	0.3557	Z
	17	28.8545	-10.9106	-44.6524	29.0794	-11.4441	-44.3062	-0.2249	-0.5335	0.3462	0.6746	0.3462	Z
	18	29.7494	-5.8687	-44.7522	29.9243	-6.3465	-44.4429	-0.1749	-0.4778	0.3093	0.5954	0.3093	Z
	19	30.2374	-0.7781	-44.8119	30.4527	-1.3407	-44.5098	-0.2153	-0.5626	0.3021	0.6739	0.3021	Z
-	20	30.4671	3.8495	-44.8088	30.5710	3.3012	-44.5617	-0.1039	0.5483	0.2471	0.6103	0.2471	Z
Ñ	21	18./411	-18.0915	-45./614	18.8580	-18.5432	-45.4132	-0.1169	-0.451/	0.3482	0.5822	0.3482	Z 7
L F	22	20.0679	-12.5200	-46.1049	20 2094	-13.0278	-45.7808	-0.1476	-0.4998	0.3241	0.6035	0.3241	7
<u> </u>	24	20.1448	-2.8096	-46.5383	20.2004	-3.3362	-46,2690	-0.0853	-0.5266	0.2693	0.5976	0.2693	Z
й I	25	21.1560	2.8892	-46.5589	21.3611	2.4371	-46.2942	-0.2051	0.4521	0.2647	0.5626	0.2647	Z
Ī	26	10.2756	-17.5942	-46.2596	10.3496	-18.0872	-45.8964	-0.0740	-0.4930	0.3632	0.6168	0.3632	Z
	27	10.0362	-11.4743	-46.7013	10.1258	-11.9549	-46.3754	-0.0896	-0.4806	0.3259	0.5876	0.3259	Z
-	28	10.0657	-5.2486	-46.9666	10.2405	-5.6209	-46.6801	-0.1748	-0.3723	0.2865	0.5012	0.2865	Z
ł	29	10.0001	-0.8469	-47.0/10	10.1/96	-1.3195	-46.81/8	-0.1/95	-0.4/26	0.2532	0.5654	0.2532	7
	30	47.04261	3.0330	-47.1132	10.1947	2.0413	-40.0700	-0.1000	0.5117	0.2300	0.3664	0.2300	7
reat	32	47.9423	-25.0000	-31 2597	44.4073	-25.5888	-20.0207	-0.4000	-0.5521	0.3143	0.7398	0.3143	7
A Dura	33	42.1329	-23.9507	-33,1098	42.2914	-24,4491	-32,7156	-0.1585	-0.4984	0.3942	0.6549	0.3942	Z
axir -	34	39.0119	-23.4351	-35.4895	39.1727	-23.9023	-35.0654	-0.1608	-0.4672	0.4241	0.6511	0.4241	Z
₹≅°	35	35.2991	-22.4564	-37.6019	35.4767	-22.9428	-37.2126	-0.1776	-0.4864	0.3893	0.6478	0.3893	Z
	36	32.0716	-22.5917	-40.2358	32.2971	-23.0985	-39.7519	-0.2255	-0.5068	0.4839	0.7361	0.4839	Z
~ -	31	47.9425	-25.8056	-28.3412	48.4075	-26.3077	-28.0267	-0.4650	-0.5021	0.3145	0.7532	-0.5021	Y
AΗΣ	32	44.6927	-25.0367	-31.2597	44.9502	-25.5888	-30.8399	-0.2575	-0.5521	0.4198	0.7398	-0.5521	Y
eral	34	42.1329	-23,4351	-35 4895	42.2914	-24.4491	-32./100	-0.1080	-0.4984	0.3942	0.6511	-0.4984	Y
A-F Late	35	35,2991	-22,4564	-37 6019	35,4767	-22.9428	-37.2126	-0.1776	-0.4864	0.3893	0.6478	-0.4864	Y
	36	32.0716	-22.5917	-40.2358	32.2971	-23.0985	-39.7519	-0.2255	-0.5068	0.4839	0.7361	-0.5068	Ý
LEO	37	4.6671	-22.9917	-40.3122	4.8100	-23.3846	-39.8804	-0.1429	-0.3929	0.4318	0.6010	0.4318	Z
nu , z	38	7.8976	-24.5578	-35.9044	7.9816	-24.8823	-35.4897	-0.0840	-0.3245	0.4147	0.5332	0.4147	Z
X axi	39	5.3634	-26.5931	-29.9093	5.4588	-26.8222	-29.4229	-0.0954	-0.2291	0.4864	0.5461	0.4864	Z
n≥℃	40	8.4690	-26.9283	-27.5801	8.5868	-27.1297	-27.0989	-0.1178	-0.2014	0.4812	0.5348	0.4812	Z
A A	37	4.6671	-22.9917	-40.3122	4.8100	-23.3846	-39.8804	-0.1429	-0.3929	0.4318	0.6010	-0.3929	Y
3 ter	38	1.89/6	-24.55/8	-35.9044	7.9816	-24.8823	-35.4897	-0.0840	-0.3245	0.414/	0.5332	-0.3245	Y
	40	8 4690	-26.9283	-29.9093	8,5868	-20.0222	-29.4229	-0.0954	-0.2291	0.4004	0.5461	-0.2291	Y
	-0	0.4030	20.0200	21.0001	0.0000	21.1201	21.0000	0.1170	0.2014	0.4012	0.0040	0.2014	1 31

Year:	20)11			Make:	Do	dge			Model:	Ram	1500 Quad	Cab
					VE	HICLE DE	FORMATIC	ON T 2					
[Pretest X	Pretest Y	Pretest Z	Posttest X	Posttest Y	Posttest Z	∆X ^A	ΔY ^A	ΔZ ^A	Total ∆	Crush ^B	Direction for
	POINT	(in.)	(in.)	(in.)	(III.)	(11.)	(III.)	(IN.)	(In.)	(In.)	(III.)	(IN.)	Crush
	1	46.9425	-38.0586	-32.8273	47.2193	-38.3257	-32.4348	-0.2768	-0.2671	0.3925	0.5496	0.5496	X, Y, Z
тÑ	2	46.6057	-25.8260	-32.5118	46.8173	-26.1314	-32.1090	-0.2116	-0.3054	0.4028	0.5480	0.5480	X, Y, Z
AS.	3	40.7107	-14.5309	-31.00//	40.9715	-14.7821	-31.4469	0.0662	-0.2512	0.4188	0.5508	0.3508	X, Y, Z
Ω×Ω	5	44.0223	-26.3573	-17.2733	42.8810	-26 5291	-16.9216	0.0002	-0.1303	0.3517	0.3915	0.3915	X Y 7
	6	40.2759	-14.2439	-17.4695	40.3318	-14.4650	-17.1994	-0.0559	-0.2211	0.2701	0.3535	0.3535	X. Y. Z
	7	56.0327	-45.7490	-7.1479	55.7943	-44.8654	-6.6859	0.2384	0.8836	0.4620	1.0252	0.8836	Y
	8	52.3096	-45.8618	-5.4465	52.0426	-44.9103	-5.1066	0.2670	0.9515	0.3399	1.0451	0.9515	Y
" Z	9	52.3916	-45.8689	-9.0812	52.1865	-45.1463	-8.6809	0.2051	0.7226	0.4003	0.8512	0.7226	Y
Ц	10	19.8952	-49.5868	-20.1843	19.7423	-50.2500	-19.6555	0.1529	-0.6632	0.5288	0.8619	-0.6632	Y
มีผ	11	33.5584	-49.5545	-19.7127	33.4203	-49.9893	-19.1583	0.1381	-0.4348	0.5544	0.7180	-0.4348	Y
380	12	42.7532	-48.5031	-20.4129	42.6085	-48.7738	-19.8694	0.1447	-0.2707	0.5435	0.6242	-0.2707	Y
ξΔ ·	13	21.2643	-48.9607	-4.6062	20.9791	-48.7022	-4.3104	0.2852	0.2080	0.3458	0.5174	0.2585	Y
Ξ.	14	40.2658	-49.0261	-3.3190	39,9761	-48.3240	-2.1910	0.2499	0.7021	0.5220	0.9801	0.7021	Y
	16	30.6523	-35 7271	-48 4939	30.8465	-36 1523	-48 1237	-0 1942	-0.4252	0.3702	0.5963	0.3702	7
ł	17	32 0812	-29 8057	-48,7138	32 3546	-30,2710	-48.3403	-0.2734	-0.4653	0.3735	0.6563	0.3735	7
ł	18	32.8978	-24.7504	-48.8059	33.1221	-25.1608	-48.4595	-0.2243	-0.4104	0.3464	0.5820	0.3464	Z
Î	19	33.3066	-19.6527	-48.8592	33.5742	-20.1473	-48.5108	-0.2676	-0.4946	0.3484	0.6615	0.3484	Z
[20	33.4642	-15.0221	-48.8510	33.6218	-15.5040	-48.5499	-0.1576	-0.4819	0.3011	0.5897	0.3011	Z
Ñ	21	22.0844	-37.1421	-49.8617	22.2484	-37.5224	-49.5160	-0.1640	-0.3803	0.3457	0.5395	0.3457	Z
	22	22.6203	-31.5693	-50.1979	22.8180	-31.9967	-49.8661	-0.1977	-0.4274	0.3318	0.5761	0.3318	Z
Ъ	23	23.2285	-25.2769	-50.4547	23.4227	-25.7152	-50.1470	-0.1942	-0.4383	0.3077	0.5696	0.3077	Z
8	24	23.2524	-21.8394	-50.6195	23.3920	-22.2940	-50.3253	-0.1396	-0.4546	0.2942	0.5592	0.2942	2
-	25	13 6130	-10.1200	-50.0314	13 7365	-10.0041	-50.3299	-0.2599	-0.3765	0.3015	0.5493	0.3015	7
	20	13 2806	-30 6603	-50.8228	13 4213	-31.0657	-50.5039	-0.1220	-0.4054	0.3189	0.5346	0.3189	7
1	28	13.2139	-24,4347	-51.0821	13,4406	-24,7299	-50,7915	-0.2267	-0.2952	0.2906	0.4722	0.2906	Z
	29	13.0800	-20.0345	-51.1824	13.3147	-20.4295	-50.9183	-0.2347	-0.3950	0.2641	0.5300	0.2641	Z
	30	13.0454	-16.1346	-51.2228	13.2711	-16.5688	-50.9689	-0.2257	-0.4342	0.2539	0.5513	0.2539	Z
	31	51.3475	-44.4180	-32.3565	51.8279	-44.8815	-32.0050	-0.4804	-0.4635	0.3515	0.7544	0.3515	Z
¥≣∩[32	48.0952	-43.6969	-35.2845	48.3739	-44.2079	-34.8332	-0.2787	-0.5110	0.4513	0.7365	0.4513	Z
∃ Ē ≻	33	45.5246	-42.6491	-37.1417	45.7071	-43.1040	-36.7190	-0.1825	-0.4549	0.4227	0.6472	0.4227	Z
Ya A	34	42.4035	-42.1797	-39.5307	42.5919	-42.5985	-39.0827	-0.1884	-0.4188	0.4480	0.6416	0.4480	Z
q <	35	35.6827	-41.2568	-41.6540	35,8922	-41.6898	-41.2455	-0.2095	-0.4330	0.4085	0.7185	0.4085	Z 7
	21	51 2475	41.4590	22 2565	51,9270	-41.00/2	-43.0007	-0.2018	-0.4474	0.49/0	0.7544	0.4970	2 V
ms I	32	48 0952	-44.4180	-35 2845	48,3730	-44.0015	-34 8332	-0.4004	-0.4033	0.3515	0.7365	-0.4035	T Y
ALC I	33	45.5246	-42,6491	-37,1417	45,7071	-43,1040	-36,7190	-0.1825	-0.4549	0.4227	0.6472	-0.4549	Y
PIL	34	42.4035	-42.1797	-39.5307	42.5919	-42.5985	-39.0827	-0.1884	-0.4188	0.4480	0.6416	-0.4188	Ý
A-I Lat	35	38.6827	-41.2568	-41.6540	38.8922	-41.6898	-41.2455	-0.2095	-0.4330	0.4085	0.6311	-0.4330	Y
	36	35.4659	-41.4398	-44.2982	35.7277	-41.8872	-43.8007	-0.2618	-0.4474	0.4975	0.7185	-0.4474	Y
	37	8.0714	-42.2664	-44.4618	8.2492	-42.5926	-44.0651	-0.1778	-0.3262	0.3967	0.5435	0.3967	Z
J.E.Y.	38	11.3120	-43.7864	-40.0452	11.4219	-44.0536	-39.6628	-0.1099	-0.2672	0.3824	0.4793	0.3824	Z
Xar	39	8.7909	-45.8669	-34.0601	8.8995	-46.0480	-33.6136	-0.1086	-0.1811	0.4465	0.4939	0.4465	Z
	40	11.8940	-46.1561	-31.7215	12.0205	-46.3140	-31.2750	-0.1265	-0.1579	0.4465	0.4902	0.4465	Z
AL	37	8.0714	-42.2664	-44.4618	8.2492	-42.5926	-44.0651	-0.1778	-0.3262	0.3967	0.5435	-0.3262	Y
3 ter	38	9 7000	-43./864	-40.0452	11.4219 9.900F	-44.0536	-39.6628	-0.1099	-0.26/2	0.3824	0.4/93	-0.2672	Y
L L	40	0.7909	-40.0009	-31 7215	0.0990	-46.0460	-33.0130	-0.1000	-0.1011	0.4465	0.4959	-0.1011	T V
-		11.0340		51.7215	12.0200		01.2100	0.1200	0.1513	0.4400	0.4302	0.1013	

deforming inward toward the occupant compartment. ^C Direction for Crush column denotes which directions are included in the crush calculations. If "NA" then no intrusion is recorded, and Crush will be 0.

Reference Set 1 Maximum Deformation ^{AB} MASH Allowable Dire Deformation (in.) Roof 0.4 ≤ 4 Windshield ^D 0.0 ≤ 3 A-Pillar Maximum 0.5 ≤ 5	ctions of prmation ^C Z X, Z Windst	Location	Reference Set Maximum Deformation ^{A.B.} (in.)	2 MASH Allowable	Directions of
Reference Set 1 Maximum Deformation ^{AB} (in.) MASH Allowable Deformation (in.) Dire Deformation (in.) Roof 0.4 ≤ 4 Mindshield ^D 0.0 ≤ 3 A-Pillar Maximum 0.5 ≤ 5 A-Pillar Jascal -0.5 ≤ 5	ctions of rrmation ^C Z X, Z Windsh	Location	Reference Set Maximum Deformation ^{A,B} (in.)	MASH Allowable	Directions of
Maximum Deformation ^{A,B} MASH Allowable Dire Deformation Roof 0.4 ≤ 4 Windshield ^D 0.0 ≤ 3 A-Pillar Maximum 0.5 ≤ 5	ctions of prmation ^C Z X, Z Windsh	Location	Maximum Deformation ^{A,B} (in.)	B MASH Allowable Deformation (in.) ≤ 4 ≤ 3 ≤ 5 ≤ 3 ≤ 5 ≤ 3 ≤ 5 ≤ 3 ≤ 5 ≤ 3 ≤ 9 ≤ 12 ≤ 9 ≤ 12 ≤ 12 NA Particular of the second se	Directions of
Roof 0.4 ≤ 4 Windshield ^D 0.0 ≤ 3 A-Pillar Maximum 0.5 ≤ 5 A-Pillar Lateral -0.5 ≤ 3	Z Roof X, Z Windsh			Deformation (in.)	Deformation ^C
Windshield ^D 0.0 ≤ 3 A-Pillar Maximum 0.5 ≤ 5 A-Pillar Lateral -0.5 ≤ 3	X, Z Windsh		0.4	≤ 4	Z
A-Pillar Maximum 0.5 ≤ 5		iield ^D	NA	≤ 3	X, Z
A-Pillar Lateral -0.5 < 3	Z A-Pillar	Maximum	0.5	≤ 5	Z
	Y A-Pillar	Lateral	-0.4	≤ 3	Y
B-Pillar Maximum 0.5 ≤ 5	Z B-Pillar	Maximum	0.4	≤ 5	Z
B-Pillar Lateral -0.2 ≤ 3	Y B-Pillar	Lateral	-0.2	≤ 3	Y
Toe Pan - Wheel Well 7.0 ≤ 9	X, Z Toe Pa	n - Wheel Well	7.2	≤ 9	X, Z
Side Front Panel 1.0 ≤ 12	Y Side Fr	ont Panel	1.0	≤ 12	Y
Side Door (above seat) -0.3 ≤ 9	Y Side D	oor (above seat)	-0.3	≤ 9	Y
Side Door (below seat) 0.7 ≤ 12	Y Side D	por (below seat)	0.7	≤ 12	Y
Floor Pan -0.5 ≤ 12	Z Floor P	an	-0.6	≤ 12	Z
Dash - no MASH requirement 0.5 NA X	CY, Z Dash -	no MASH requirement	0.5	NA	X. Y, Z
¹ Positive values denote deformation as inward toward the occupant compartment ² For Toe Pan - Wheel Well the direction of defromation may include X and Z dire directions. The direction of deformation for Toe Pan - Wheel Well, A-Pillar Maxim sccupant compartment. If direction of deformation is "NA" then no intrusion is rec ³ If deformation is observered for the windshield then the windshield deformation is recorded.	t, negative values denote iction. For A-Pillar Maximum, and B-Pillar Maximum corded and deformation w is measured posttest with	deformations outward awa um and B-Pillar Maximum f n only include components ill be 0. an examplar vehicle, there	y from the occupan he direction of defo where the deformation fore only one set o	it compartment. prmation may include tion is positive and inf f reference is measur	X, Y, and Z truding into the red and

Figure C-7. Maximum Occupant Compartment Deformation by Location, Test No. GSH-1

						HICLE DE	FORMATIC	ON T 1					
	POINT	Pretest X (in.)	Pretest Y (in.)	Pretest Z (in.)	Posttest X (in.)	Posttest Y (in.)	Posttest Z (in.)	∆X ^A (in.)	ΔΥ ^A (in.)	∆Z ^A (in.)	Total ∆ (in.)	Crush ^B (in.)	Direction for Crush ^c
	1	42.6399	-18.9891	-29.4088	42.5797	-19.4197	-29.4079	0.0602	-0.4306	0.0009	0.4348	0.4348	X, Y, Z
тÑ	2	43.3084	-7.4504	-28.6598	43.2567	-7.9746	-28.4604	0.0517	-0.5242	0.1994	0.5632	0.5632	X, Y, Z
ASI ,	3	43.5586	4.1/09	-28.3215	43.5251	3.6868	-28.0654	0.0335	0.4841	0.2561	0.5487	0.5487	X, Y, Z
0×	4	40.2000	-21.2070	-13.3140	39.6945	-21.6024	-12.9900	0.3043	-0.5149	0.3174	0.6272	0.6272	X, Y, Z
	6	36 2246	4 2201	-17.0444	36 1036	3 7160	-16.8826	0.3484	0.5041	0.1022	0.5431	0.5431	X Y 7
	7	48.0281	-28 0417	-2 0371	47 4408	-27 4782	-2.0245	0.5873	0.5635	0.0126	0.8140	0.5635	V
JES	8	48 1308	-28.0424	-5.4639	47.5695	-27.6735	-5.4286	0.5613	0.3689	0.0353	0.6726	0.3689	Y
NA)	9	52.4609	-28.0475	-4.3107	51.7147	-27.3047	-4.3575	0.7462	0.7428	-0.0468	1.0539	0.7428	Y
П	10	37.4389	-30.3668	-16.5499	36.9869	-31.0503	-16,4582	0.4520	-0.6835	0.0917	0.8246	-0.6835	Y
<u>ה</u>	11	28.2348	-31.1763	-16.3525	27.8196	-32.1100	-16.1246	0.4152	-0.9337	0.2279	1.0470	-0.9337	Y
-60	12	17.9967	-30.8423	-16.6748	17.6056	-31.9852	-16.5280	0.3911	-1.1429	0.1468	1.2169	-1.1429	Y
28C	13	38.0112	-29.2088	-6.3247	37.4394	-29.4015	-6.2583	0.5718	-0.1927	0.0664	0.6070	-0.1927	Y
ц Ч	14	29.5275	-31.2942	-3.6153	29.0481	-31.6584	-3.5414	0.4794	-0.3642	0.0739	0.6066	-0.3642	Y
=	15	17.8171	-30.4734	-3.0873	17.4368	-30.9670	-2.9835	0.3803	-0.4936	0.1038	0.6317	-0.4936	Y
	16	26.7907	-16.2976	-44.6363	26.7832	-16.8837	-44.5828	0.0075	-0.5861	0.0535	0.5886	0.0535	Z
	17	28.5057	-9.5240	-44.8968	28.5529	-10.0508	-44.8140	-0.0472	-0.5268	0.0828	0.5354	0.0828	Z
	18	29.4614	-3.6335	-44.9964	29.4885	-4.2396	-44.8940	-0.0271	-0.6061	0.1024	0.6153	0.1024	2
	19	29.8689	5.0250	-45.0230	29.8593	0.3645	-44.9194	0.0096	0.6442	0.1036	0.6249	0.1036	7
-	20	16,6960	-16 7747	-45.0302	16 6336	-17 3330	-44.9301	0.0204	-0.5583	0.0627	0.0240	0.0627	7
	22	16 7637	-10.6532	-46 4692	16.8037	-11 2270	-46 4080	-0.0400	-0.5738	0.0612	0.5784	0.0612	7
Ļ l	23	16.5122	-5.8652	-46.6597	16.5641	-6.4088	-46.5998	-0.0519	-0.5436	0.0599	0.5493	0.0599	Z
8	24	17.4117	0.0656	-46.8560	17.3989	-0.5506	-46.7963	0.0128	0.6162	0.0597	0.6192	0.0597	Z
Ω.	25	17.4081	4.5367	-46.8850	17.5039	3.9999	-46.8209	-0.0958	0.5368	0.0641	0.5490	0.0641	Z
	26	8.5927	-16.1581	-46.4836	8.5494	-16.7034	-46.4380	0.0433	-0.5453	0.0456	0.5489	0.0456	Z
	27	8.9590	-10.2773	-46.8426	9.0017	-10.8653	-46.7897	-0.0427	-0.5880	0.0529	0.5919	0.0529	Z
	28	9.3712	-5.4020	-47.0314	9.2992	-5.9319	-46.9836	0.0720	-0.5299	0.0478	0.5369	0.0478	Z
	29	9.6100	-0.2834	-47.1449	9.6043	-0.8426	-47.1034	0.0057	-0.5592	0.0415	0.5608	0.0415	Z
	30	9.9762	4.9302	-47.1618	9.9608	4.31/6	-47.1235	0.0154	0.6126	0.0383	0.6140	0.0383	2
~ _	31	46.7383	-26.3650	-29.7360	46.8312	-27.0590	-29.6415	-0.0929	-0.6940	0.0945	0.7065	0.0945	<u> </u>
	32	45.0425	-26.0202	-31.1223	40.0228	-20.0708	-31.12/4	0.0197	-0.6077	-0.0049	0.6016	0.0197	7
l ≞ ≻	34	39 7385	-23.3201	-32.7924	39 7404	-20.0130	-32.7730	-0.0708	-0.6469	-0.0194	0.6916	0.0194	
A Ma	35	36 1292	-24 0330	-37 6662	36 1982	-24 6742	-37 6052	-0.0690	-0.6412	0.0610	0.6478	0.0610	7
	36	32.2011	-23.2401	-39.6552	32.2339	-23.8663	-39.6381	-0.0328	-0.6262	0.0171	0.6273	0.0171	Z
	31	46.7383	-26.3650	-29.7360	46.8312	-27.0590	-29.6415	-0.0929	-0.6940	0.0945	0.7065	-0.6940	Y
45	32	45.0425	-26.0202	-31.1225	45.0228	-26.6708	-31.1274	0.0197	-0.6506	-0.0049	0.6509	-0.6506	Y
al (33	42.4741	-25.3261	-32.7924	42.5449	-26.0138	-32.7730	-0.0708	-0.6877	0.0194	0.6916	-0.6877	Y
PIL	34	39.7385	-24.7148	-34.6905	39.7404	-25.3617	-34.6998	-0.0019	-0.6469	-0.0093	0.6470	-0.6469	Y
L ³	35	36.1292	-24.0330	-37.6662	36.1982	-24.6742	-37.6052	-0.0690	-0.6412	0.0610	0.6478	-0.6412	Y
	36	32.2011	-23.2401	-39.6552	32.2339	-23.8663	-39.6381	-0.0328	-0.6262	0.0171	0.6273	-0.6262	Y
AH MIN	37	3.9324	-23.4156	-39.4771	3.9441	-23.8891	-39.3181	-0.0117	-0.4735	0.1590	0.4996	0.1590	Z
Ľ,E,≻	38	1.5501	-25.9836	-32.5961	1.40/0	-26.4067	-32.3891	0.1431	-0.4231	0.2070	0.4923	0.2516	X, Z
Xa	39	4.7990	-27.013/	-24.0/06	9.7564	-21.84/9	-24.40/0	0.143/	-0.3342	0.1636	0.3989	0.23/2	X, Z
	40	0.0930	-21.1010	-19.9100	0.7004	-20.0004	-19./20/	0.13/2	-0.3030	0.1698	0.3834	0.2342	X, Z
alA	31	3.9324	-23.4106	-39.4//1	3.9441	-23.8891	-39.3181	-0.0117	-0.4735	0.1590	0.4996	-0.4/35	Y
3 ge L	30	4 7990	-20.9030	-24 5706	4 6553	-20.4007	-32.3091	0.1431	-0.4231	0.2070	0.4923	-0.4231	T V
μ μ	40	8 8936	-27 7818	-19.9165	8 7564	-28 0854	-19 7267	0.1372	-0.3036	0.1898	0.3834	-0.3036	Y
		0.0000	21.7010	10.0100	0.7004	20.0004	10.1201	Use denote	defermetic	0.1000	0.0004	0.0000	

						HICLE DE	FORMATI	ON T 2					
[Pretest X	Pretest Y	Pretest Z	Posttest X	Posttest Y	Posttest Z		ΔY ^A	۵Z ^A	Total ∆	Crush ^B	Direction for
	POINT	(in.)	(in.)	(in.)	(111)	(11.)	(01.)	(11.)	(11.)	(11.)	(iii.)	(11.)	Crush
	1	44.6458	-39.0721	-33.1491	44.8600	-39.2935	-33.2983	-0.2142	-0.2214	-0.1492	0.3423	0.3423	X, Y, Z
цÑ	3	45.4476	-27.0422	-32.3947	45.6762	-27.8579	-32.3409	-0.2280	-0.3157	0.0478	0.3927	0.3927	X, Y, Z
AS AS	4	42.1005	-41.3396	-17.0751	41.8764	-41.6405	-16.8995	0.2241	-0.3009	0.1756	0.4142	0.4142	X, Y, Z
L X	5	42.0316	-28.6786	-16.2698	42.0338	-28.8991	-16.3063	-0.0022	-0.2205	-0.0365	0.2235	0.2235	X, Y, Z
	6	38.4073	-15.7855	-20.8399	38.6216	-16.0791	-20.7983	-0.2143	-0.2936	0.0416	0.3659	0.3659	X, Y, Z
цЦ	7	49.6914	-48.1861	-5.7325	49.5048	-47.4133	-5.8954	0.1866	0.7728	-0.1629	0.8115	0.7728	Y
SAS	8	49.8232	-48.1884	-9.1584	49.6453	-47.6100	-9.2990	0.1779	0.5784	-0.1406	0.6213	0.5784	Y
<u>п</u>	9	54.1430	-48.2458	-7.9684	53.7903	-47.2932	-8.2105	0.3527	0.9526	-0.2421	1.0442	0.9526	Y
H I	10	39.1985	-50.3845	-20.3347	39.0677	-50.8536	-20.3/33	0.1308	-0.4691	-0.0386	0.4885	-0.4691	Y
ы К С	12	19 7537	-51.0824	-20.2134	19.6767	-51 5459	-20.0782	0.0973	-0.7161	0.1372	0.7356	-0.7101	Y
300	13	39.6979	-49.2322	-10.1051	39,4980	-49.2110	-10.1714	0.1999	0.0212	-0.0663	0.2117	0.0212	Y
	14	31.1669	-51.2145	-7.4677	31.0677	-51.3628	-7.4900	0.0992	-0.1483	-0.0223	0.1798	-0.1483	Y
≤	15	19.4632	-50.2518	-7.0391	19.4638	-50.5261	-6.9808	-0.0006	-0.2743	0.0583	0.2804	-0.2743	Y
	16	28.9602	-36.1906	-48.5107	29.1604	-36.5594	-48.5392	-0.2002	-0.3688	-0.0285	0.4206	-0.0285	Z
	17	30.7592	-29.4383	-48.7567	31.0164	-29.7492	-48.7623	-0.2572	-0.3109	-0.0056	0.4035	-0.0056	Z
	18	31.7870	-23.5599	-48.8483	32.0251	-23.9501	-48.8379	-0.2381	-0.3902	0.0104	0.4572	0.0104	Z
	19	32.2509	-18.9229	-48.8/15	32.4536	-19.3511	-48.8614	-0.2027	-0.4282	0.0101	0.4/39	0.0101	7
-	20	18 8736	-14.9003	-40.0040	19 0124	-10.3000	-40.07 10	-0.1388	-0.3993	0.0129	0.4441	0.0129	7
N	22	19.0182	-30.4254	-50.4287	19.2603	-30,7782	-50.4058	-0.2421	-0.3528	0.0229	0.4285	0.0229	Z
ч. Ц	23	18.8263	-25.6347	-50.6214	19.0818	-25.9573	-50.5982	-0.2555	-0.3226	0.0232	0.4122	0.0232	Z
8 I	24	19.7992	-19.7153	-50.8102	19.9907	-20.1101	-50.7906	-0.1915	-0.3948	0.0196	0.4392	0.0196	Z
Ω	25	19.8500	-15.2445	-50.8392	20.1528	-15.5612	-50.8144	-0.3028	-0.3167	0.0248	0.4389	0.0248	Z
	26	10.7815	-35.8309	-50.5124	10.9383	-36.1507	-50.4710	-0.1568	-0.3198	0.0414	0.3586	0.0414	Z
	27	11.2221	-29.9550	-50.8683	11.4651	-30.3188	-50.8202	-0.2430	-0.3638	0.0481	0.4401	0.0481	7
	20	11.0949	-19 9699	-51 1653	12 1944	-20.3044	-51.0124	-0.1978	-0.3345	0.0414	0.3337	0.0414	7
	30	12,4261	-14.7611	-51.1791	12.6156	-15.1491	-51.1487	-0.1895	-0.3880	0.0304	0.4329	0.0304	Z
	31	48.6572	-46.4971	-33.4415	49.0165	-46.9854	-33.5148	-0.3593	-0.4883	-0.0733	0.6107	0.0000	NA
Y E G	32	46.9775	-46.1319	-34.8423	47.2194	-46.5746	-35.0082	-0.2419	-0.4427	-0.1659	0.5311	0.0000	NA
	33	44.4320	-45.4069	-36.5339	44.7568	-45.8865	-36.6641	-0.3248	-0.4796	-0.1302	0.5937	0.0000	NA
Y axi	34	41.7202	-44.7628	-38.4552	41.9688	-45.1993	-38.6027	-0.2486	-0.4365	-0.1475	0.5235	0.0000	NA
₹2 ⁻	35	38.1448	-44.0377	-41.4615	38.4478	-44.4674	-41.5228	-0.3030	-0.4297	-0.0613	0.5293	0.0000	NA
	30	J4.2430	-43.19/0	-43.483/	34.0024	45.0099	-43.3/23	-0.2008	-0.4124	-0.0886	0.4949	0.0000	INA V
m S	32	40.00/2	-40.49/1	-33.4415	49.0165	-40.9804	-33.0148	-0.3093	-0.4883	-0.0/33	0.5311	-0.4883	Y
LAF S	33	44 4320	-45 4069	-36 5339	44 7568	-45 8865	-36 6641	-0.32419	-0.4796	-0.1302	0.5937	-0.4796	Y
PIL	34	41.7202	-44.7628	-38.4552	41.9688	-45.1993	-38.6027	-0.2486	-0.4365	-0.1475	0.5235	-0.4365	Ý
A-F Lat	35	38.1448	-44.0377	-41.4615	38.4478	-44.4674	-41.5228	-0.3030	-0.4297	-0.0613	0.5293	-0.4297	Y
	36	34.2436	-43.1975	-43.4837	34.5024	-43.6099	-43.5723	-0.2588	-0.4124	-0.0886	0.4949	-0.4124	Y
	37	5.9744	-43.0307	-43.5456	6.2135	-43.2785	-43.3712	-0.2391	-0.2478	0.1744	0.3860	0.1744	Z
∃ Ē ≻	38	9.5022	-45.6415	-36.6342	9.6155	-45.8395	-36.4278	-0.1133	-0.1980	0.2064	0.3076	0.2064	Z
X Max	39	6.6647	-47.1373	-28.6322	6.8124	-47.2464	-28.4575	-0.1477	-0.1091	0.1747	0.2535	0.1747	Z
л <u>с</u> -	40	10.7101 5.0744	42 0207	-23.9435	6 2425	42 0705	-23.7000	-0.1/44	-0.0811	0.1835	0.2000	0.1635	<u>ک</u>
Tal A	38	9.5022	-45.0307	-43.0400	9,6155	-45.2785	-43.3/12	-0.2391	-0.2478	0.1/44	0.3076	-0.2478	Y V
3 ater	39	6.6647	-47.1373	-28.6322	6.8124	-47.2464	-28.4575	-0.1477	-0.1091	0.1747	0.2535	-0.1091	Y
	40	10.7161	-47.4544	-23.9435	10.8905	-47.5355	-23.7600	-0.1744	-0.0811	0.1835	0.2658	-0.0811	Ý
Positive v ompartme	alues denot nt.	e deformatio	on as inward	I toward the	occupant co	ompartment	, negative va	lues denote	deformatio	ns outward	away from t	he occupant	t

Reference Set 1 Maximum Deformation ^{A,B} (in.) MASH Allowable Deformation (in.) Directions of Deformation ^C Maximum Deformation ^{A,B} (in.) MASH Allowable Deformation ^C Directions of Deformation ^C Roof 0.1 ≤ 4 Z Maximum Deformation ^C MASH Allowable Deformation ^C Directions of Deformation ^C A-Pillar Lateral 0.0 ≤ 3 X, Z A-Pillar Lateral 0.0 ≤ 5 NA A-Pillar Lateral -0.6 ≤ 3 Y A-Pillar Lateral -0.4 ≤ 3 X B-Pillar Lateral -0.3 ≤ 5 X, Z B-Pillar Maximum 0.2 ≤ 5 NA Side Dor (below seat) -0.7 ≤ 9 Y Side Dor (below seat) -0.5 ≤ 9 Side Dor (below seat) -0.5 ≤ 9 Side Dor (below seat) -0.0 ≤ 12 Side Dor (below seat) -0.5 ≤ 9 Side Dor (below seat) -0.5 ≤ 9 Side Dor (below seat) -0.0 ≤ 12 Side Dor (below seat) -0.0 ≤ 12 - Floor Pan 0.3 ≤ 12	Year	2013	-	Make:	Dodge	Model:	Ram	1500
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Reference Se	t 1			Reference Se	t 2	
Roof0.1 ≤ 4 ZRoof0.0 ≤ 4 Windshield ^D 0.0 ≤ 3 X, ZWindshield ^D NA ≤ 3 XA-Pillar Maximum0.1 ≤ 5 ZA-Pillar Lateral0.0 ≤ 5 NA-Pillar Lateral-0.6 ≤ 3 YA-Pillar Lateral-0.4 ≤ 3 XB-Pillar Maximum0.3 ≤ 5 X, ZB-Pillar Maximum0.2 ≤ 5 NB-Pillar Lateral-0.3 ≤ 3 YB-Pillar Maximum0.2 ≤ 5 NSide Pon - Wheel Well2.9 ≤ 9 X, ZB-Pillar Maximum0.2 ≤ 5 NSide Door (above seat)-0.7 ≤ 12 YSide Door (above seat)-0.5 ≤ 9 Side Door (above seat)-0.5 ≤ 9 Side Door (below seat)0.0 ≤ 12 Side Door (below seat)0.0 ≤ 12 NFloor Pan0.3 ≤ 12 ZYSide Door (below seat)0.0 ≤ 12 NDash - no MASH requirement0.8NAX, Y, ZDash - no MASH requirement0.8NAX,Positive values denote deformation as inward loward the occupant compartment, negative values denote deformations outward away from the occupant compartment. 2 of A-Pillar Maximum and B-Pillar Maximum the direction of deformation may include X Y, and	Location	Maximum Deformation ^{A.B} (in.)	MASH Allowable Deformation (in.)	Directions of Deformation ^C	Location	Maximum Deformation ^{A,B} (in.)	MASH Allowable Deformation (in.)	Directions of Deformation ^C
Windshield 0.0 ≤ 3 X, Z Windshield NA ≤ 3 X A-Pillar Maximum 0.1 ≤ 5 Z A -Pillar Maximum 0.0 ≤ 5 N A-Pillar Maximum 0.1 ≤ 5 Z A -Pillar Maximum 0.0 ≤ 5 N A-Pillar Lateral -0.6 ≤ 3 Y A -Pillar Maximum 0.0 ≤ 5 N B-Pillar Lateral -0.3 ≤ 3 Y A -Pillar Maximum 0.2 ≤ 5 A B-Pillar Lateral -0.3 ≤ 3 Y B -Pillar Maximum 0.2 ≤ 5 A Side Front Panel 0.7 ≤ 12 Y Y $Side Foot Panel$ 1.0 ≤ 12 Side Door (above seat) -0.2 ≤ 12 Y $Side Foot Panel$ 1.0 ≤ 12 T Dash - no MASH requirement 0.8 NA X, Y, Z $Side Door (below seat)$ 0.0 ≤ 12 T Pars highlighted in red do not meet MASH allowable deformations. A X, Y, Z $Dash - no MASH requirement$ 0.8 NA X, Y A hems highlighted in red do not meet MASH allowable deformations. A A A A A A X A <td< td=""><td>Roof</td><td>0.1</td><td>≤ 4</td><td>Z</td><td>Roof</td><td>0.0</td><td>≤ 4</td><td>Z</td></td<>	Roof	0.1	≤ 4	Z	Roof	0.0	≤ 4	Z
A-Pillar Maximum0.1 ≤ 5 ZA-Pillar Maximum0.0 ≤ 5 NA-Pillar Lateral-0.6 ≤ 3 YB-Pillar Maximum0.3 ≤ 5 X, ZB-Pillar Lateral-0.3 ≤ 3 YFoe Pan - Wheel Well2.9 ≤ 9 X, ZSide Front Panel0.7 ≤ 12 YSide Door (above seat)-0.7 ≤ 9 YSide Door (below seat)-0.2 ≤ 12 YSide Door (below seat)-0.2 ≤ 12 YDash - no MASH requirement0.8NAX, Y, ZThe maxinguine values denote deformation as invard loward the occupant compartment, negative values denote deformation so utward away from the occupant compartment.Positive values denote deformation as invard loward the occupant on may include X and Z direction. For A-Pillar Maximum and B-Pillar Maximum the direction of deformation may include X.Y. and	Windshield	0.0	≤ 3	X, Z	Windshield	NA	≤ 3	X, Z
A-Pillar Lateral-0.6 \leq 3YA-Pillar Maximum0.2 \leq 3B-Pillar Maximum0.3 \leq 5X, ZB-Pillar Maximum0.2 \leq 5B-Pillar LateralB-Pillar Lateral-0.3 \leq 3YB-Pillar Maximum0.2 \leq 5B-Pillar LateralToe Pan - Wheel Well2.9 \leq 9X, ZB-Pillar Lateral-0.1 \leq 3Toe Pan - Wheel Well2.8 \leq 9XSide Front Panel0.7 \leq 12YSide Front Panel1.0 \leq 12Side Door (above seat)-0.5 \leq 9ZSide Door (below seat)-0.2 \leq 12YSide Door (above seat)-0.5 \leq 9ZFloor Pan0.3 \leq 12ZSide Door (below seat)0.0 \leq 12Toe Pan - MASH requirement0.8NAX, Y, ZDash - no MASH requirement0.8NAX, Y, ZDash - no MASH requirement0.8NAX, Y, and the structure of the occupant compartment, negative values denote deformations outward wave from the occupant compartment.* Positive values denote deformation as inward toward the occupant compartment, regative values denote deformations outward away from the occupant compartment.* Positive values denote deformation may include X and Z direction. For A-Pillar Maximum and B-Pillar Maximum the direction of deformation may include X.Y, and S	A-Pillar Maximum	0.1	≤ 5	Z	A-Pillar Maximum	0.0	≤ 5	NA
B-Pillar Maximum0.3 ≤ 5 X, ZB-Pillar Maximum0.2 ≤ 5 B-Pillar Lateral-0.3 ≤ 3 YB-Pillar Lateral-0.1 ≤ 3 ToToe Pan - Wheel Well2.9 ≤ 9 X, ZToe Pan - Wheel Well2.8 ≤ 9 XSide Front Panel0.7 ≤ 12 YSide Front Panel1.0 ≤ 12 Side Front Panel1.0 ≤ 12 Side Door (above seat)-0.7 ≤ 9 YSide Door (above seat)-0.5 ≤ 9 Side Door (above seat)-0.5 ≤ 9 Side Door (above seat)0.0 ≤ 12 Side Door (above seat) $= 0.5$ ≤ 9 $= 0.5$ ≤ 12 Side Door (above seat) $= 0.5$ ≤ 12 $= 0.5$ ≤ 12 $= 0.5$ $= 0.5$ ≤ 12 $= 0.5$ $= 0.5$ ≤ 12 $= 0.5$ ≤ 12 $= 0.5$ $= 0.5$ ≤ 12 $= 0.5$ $= 0.5$ ≤ 12 $= 0.5$ $= 0.5$ $= 0.5$ $= 0.5$ $= 0.5$ $= 0.5$ $= 0.5$ $= 0.5$ $= 0.5$ $= 0.5$ $= 0.5$ $= 0.5$ $= 0.5$ $= 0.5$ $= 0.5$ $= 0.5$ $= 0.5$ $= 0.5$ <t< td=""><td>A-Pillar Lateral</td><td>-0.6</td><td>≤ 3</td><td>Y</td><td>A-Pillar Lateral</td><td>-0.4</td><td>≤ 3</td><td>Y</td></t<>	A-Pillar Lateral	-0.6	≤ 3	Y	A-Pillar Lateral	-0.4	≤ 3	Y
B-Pillar Lateral -0.3 ≤ 3 Y B-Pillar Lateral -0.1 ≤ 3 Toe Pan - Wheel Well 2.9 ≤ 9 X, Z Side Front Panel 0.7 ≤ 12 Y Side Door (below seat) -0.7 ≤ 9 Y Side Door (below seat) -0.2 ≤ 12 Y Floor Pan 0.3 ≤ 12 Z Dash - no MASH requirement 0.8 NA X, Y, Z Positive values denote deformation as inward toward the occupant compartment, negative values denote deformations outward away from the occupant compartment. For De Pan - Wheel Well the direction of deformation may include X and Z direction. For A-Pillar Maximum the direction of deformation may include X.Y. and	B-Pillar Maximum	0.3	≤ 5	X, Z	B-Pillar Maximum	0.2	≤ 5	Z
Toe Pan - Wheel Well 2.9 ≤ 9 X, Z Side Front Panel 0.7 ≤ 12 Y Side Door (above seat) -0.7 ≤ 9 Y Side Door (below seat) -0.2 ≤ 12 Y Floor Pan 0.3 ≤ 12 Y Side Door (below seat) 0.0 ≤ 12 Dash - no MASH requirement 0.8 NA X, Y, Z Positive values denote deformation as inward toward the occupant compartment, negative values denote deformation as inward toward the occupant compartment. For De Pan - Wheel Well 10.0 ≤ 12 1	B-Pillar Lateral	-0.3	≤ 3	Y	B-Pillar Lateral	-0.1	≤ 3	Y
Side Front Panel 0.7 ≤ 12 Y Side Front Panel 1.0 ≤ 12 Side Door (above seat) -0.7 ≤ 9 Y Side Door (above seat) -0.5 ≤ 9 Side Door (above seat) 0.0 ≤ 12 Side Door (above seat) 0.0 ≤ 12 Side Door (above seat) 0.0 ≤ 12 Side Door (above seat) Side Door (above seat) 0.0 ≤ 12 Side Door (above seat) Side Door (above seat	Toe Pan - Wheel Well	2.9	≤ 9	X, Z	Toe Pan - Wheel Well	2.8	≤ 9	X, Z
Side Door (above seat) -0.7 ≤ 9 Y Side Door (below seat) -0.2 ≤ 12 Y Side Door (below seat) -0.2 ≤ 12 Y Floor Pan 0.3 ≤ 12 Z Dash - no MASH requirement 0.8 NA X, Y, Z Positive values denote deformation as inward toward the occupant compartment, negative values denote deformations outward away from the occupant compartment. For Toe Pan - Wheel Well the direction of deformation may include X and Z direction. For A-Pillar Maximum and B-Pillar Maximum the direction of deformation may include X.Y. and	Side Front Panel	0.7	≤ 12	Y	Side Front Panel	1.0	≤ 12	Y
Side Door (below seat) -0.2 ≤ 12 Y Floor Pan 0.3 ≤ 12 Z Dash - no MASH requirement 0.8 NA X, Y, Z ^A terms highlighted in red do not meet MASH allowable deformations. 0.8 NA X, Y, Z ^B Positive values denote deformation as inward toward the occupant compartment, negative values denote deformations outward away from the occupant compartment. For Toe Pan - Wheel Well the direction of deformation may include X and Z direction. For A-Pillar Maximum and B-Pillar Maximum the direction of deformation may include X.Y. and	Side Door (above seat)	-0.7	≤ 9	Y	Side Door (above seat)	-0.5	≤ 9	Y
Floor Pan 0.3 ≤ 12 Z Floor Pan 0.5 ≤ 12 Dash - no MASH requirement 0.8 NA X, Y, Z Dash - no MASH requirement 0.8 NA X, ^htems highlighted in red do not meet MASH allowable deformations. Positive values denote deformation as inward toward the occupant compartment, negative values denote deformations outward away from the occupant compartment. For Toe Pan - Wheel Well the direction of deformation may include X and Z direction. For A-Pillar Maximum and B-Pillar Maximum the direction of deformation may include X.Y. and	Side Door (below seat)	-0.2	≤ 12	Y	Side Door (below seat)	0.0	≤ 12	Y
Dash - no MASH requirement 0.8 NA X, Y, Z Dash - no MASH requirement 0.8 NA X, ¹ Items highlighted in red do not meet MASH allowable deformations. ⁹ Positive values denote deformation as inward toward the occupant compartment, negative values denote deformations outward away from the occupant compartment. ⁷ For Toe Pan - Wheel Well the direction of deformation may include X and Z direction. For A-Pillar Maximum and B-Pillar Maximum the direction of deformation may include X.Y. and	Floor Pan	0.3	≤ 12	Z	Floor Pan	0.5	≤ 12	Z
A Items highlighted in red do not meet MASH allowable deformations. Positive values denote deformation as inward toward the occupant compartment, negative values denote deformations outward away from the occupant compartment. Por Toe Pan - Wheel Well the direction of defromation may include X and Z direction. For A-Pillar Maximum and B-Pillar Maximum the direction of deformation may include X, Y, and	Dash - no MASH requirement	0.8	NA	X, Y, Z	Dash - no MASH requirement	0.8	NA	X, Y, Z
tirections. The direction of deformation for Toe Pan -Wheel Well, A-Pillar Maximum, and B-Pillar Maximum only include components where the deformation is positive and intruding in accupant compartment. If direction of deformation is "NA" then no intrusion is recorded and deformation will be 0. If deformation is observered for the windshield then the windshield deformation is measured posttest with an examplar vehicle, therefore only one set of reference is measured and ecorded.	¹ Positive values denote deformat ² For Toe Pan - Wheel Well the di interctions. The direction of deforn occupant compartment. If directic ⁰ If deformation is observered for ecorded.	ion as inward towar rection of defromati nation for Toe Pan in of deformation is the windshield then	d the occupant comp on may include X and Wheel Well, A-Pillar "NA" then no intrusio the windshield defor	artment, negative val J Z direction. For A-F Maximum, and B-Pilla n is recorded and def nation is measured p	ues denote deformations outward awa Pillar Maximum and B-Pillar Maximum ar Maximum only include components ormation will be 0. osttest with an examplar vehicle, there	ay from the occupar the direction of defe where the deforma efore only one set o	nt compartment. ormation may include tion is positive and ir f reference is measu	X, Y, and Z truding into the red and

Figure C-10. Maximum Occupant Compartment Deformation by Location, Test No. GSH-2

Figure C-11. Exterior Vehicle Crush (NASS) - Front, Test No. GSH-1

Figure C-12. Exterior Vehicle Crush (NASS) - Side, Test No. GSH-1

Figure C-13. Exterior Vehicle Crush (NASS) - Front, Test No. GSH-2

Figure C-14. Exterior Vehicle Crush (NASS) - Side, Test No. GSH-2

Appendix D. Accelerometer and Rate Transducer Data Plots, Test No. GSH-1

Figure D-1. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. GSH-1

Figure D-2. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. GSH-1

Figure D-3. Longitudinal Occupant Displacement (SLICE-1), Test No. GSH-1

Figure D-4. 10-ms Average Lateral Deceleration (SLICE-1), Test No. GSH-1

Figure D-5. Lateral Occupant Impact Velocity (SLICE-1), Test No. GSH-1

Figure D-6. Lateral Occupant Displacement (SLICE-1), Test No. GSH-1

Figure D-7. Vehicle Angular Displacements (SLICE-1), Test No. GSH-1

Figure D-8. Acceleration Severity Index (SLICE-1), Test No. GSH-1

Figure D-9. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. GSH-1

Figure D-10. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. GSH-1

Figure D-11. Longitudinal Occupant Displacement (SLICE-2), Test No. GSH-1

Figure D-12. 10-ms Average Lateral Deceleration (SLICE-2), Test No. GSH-1

Figure D-13. Lateral Occupant Impact Velocity (SLICE-2), Test No. GSH-1

Figure D-14. Lateral Occupant Displacement (SLICE-2), Test No. GSH-1

Figure D-15. Vehicle Angular Displacements (SLICE-2), Test No. GSH-1

Figure D-16. Acceleration Severity Index (SLICE-2), Test No. GSH-1

Appendix E. Accelerometer and Rate Transducer Data Plots, Test No. GSH-2

Figure E-1. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. GSH-2

Figure E-2. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. GSH-2

Figure E-3. Longitudinal Occupant Displacement (SLICE-1), Test No. GSH-2

Figure E-4. 10-ms Average Lateral Deceleration (SLICE-1), Test No. GSH-2

Figure E-5. Lateral Occupant Impact Velocity (SLICE-1), Test No. GSH-2

Figure E-6. Lateral Occupant Displacement (SLICE-1), Test No. GSH-2

Figure E-7. Vehicle Angular Displacements (SLICE-1), Test No. GSH-2

Figure E-8. Acceleration Severity Index (SLICE-1), Test No. GSH-2

Figure E-9. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. GSH-2

Figure E-10. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. GSH-2

Figure E-11. Longitudinal Occupant Displacement (SLICE-2), Test No. GSH-2

Figure E-12. 10-ms Average Lateral Deceleration (SLICE-2), Test No. GSH-2

Figure E-13. Lateral Occupant Impact Velocity (SLICE-2), Test No. GSH-2

Figure E-14. Lateral Occupant Displacement (SLICE-2), Test No. GSH-2

Figure E-15. Vehicle Angular Displacements (SLICE-2), Test No. GSH-2

199

Figure E-16. Acceleration Severity Index (SLICE-2), Test No. GSH-2

END OF DOCUMENT