

Test Report No. 614721-01-1&2 Test Report Date: August 2023

DETERMINATION OF LENGTH-OF-NEED FOR GUARDRAIL WITHOUT ANCHORAGE

by

James C. Kovar Assistant Research Scientist

William Schroeder Engineering Research Associate

Daniel Curran Student Technician

and

Heath Buttery Student Technician

Contract No.: T4541-DZ Test Nos.: 614721-01-1 and 614271-01-2 Test Dates: 2022-10-26 and 2021-04-06

Sponsored by Roadside Safety Research Program Pooled Fund Study No. TPF-5(343)

TEXAS A&M TRANSPORTATION INSTITUTE PROVING GROUND

Mailing Address:LRoadside Safety & Physical SecurityCampusTexas A&M University System3135 TAMUCollege Station, TX 77843-3135

Located at: y Texas A&M University System RELDS

Building 7091 1254 Avenue A Bryan, TX 77807

ISO 17025 Laboratory Testing Certificate # 2821.01

DISCLAIMER

The contents of this report reflect the views of the authors, who are solely responsible for the facts and accuracy of the data and the opinions, findings, and conclusions presented herein. The contents do not necessarily reflect the official views or policies of the Roadside Safety Pooled Fund Group, Washington State Department of Transportation (WSDOT), The Texas A&M University System, or the Texas A&M Transportation Institute (TTI). This report does not constitute a standard, specification, or regulation. In addition, the above listed agencies/companies assume no liability for its contents or use thereof. The names of specific products or manufacturers listed herein do not imply endorsement of those products or manufacturers.

The results reported herein apply only to the article tested. The full-scale crash tests were performed according to TTI Proving Ground quality procedures and *Manual for Assessing Safety Hardware* guidelines and standards.

The Proving Ground Laboratory within TTI's Roadside Safety and Physical Security Division ("TTI Lab") strives for accuracy and completeness in its crash test reports. On rare occasions, unintentional or inadvertent clerical errors, technical errors, omissions, oversights, or misunderstandings (collectively referred to as "errors") may occur and may not be identified for corrective action prior to the final report being published and issued. If, and when, the TTI Lab discovers an error in a published and issued final report, the TTI Lab will promptly disclose such error to the Roadside Safety Pooled Fund Group, WSDOT, and all parties shall endeavor in good faith to resolve this situation. The TTI Lab will be responsible for correcting the error that occurred in the report, which may be in the form of errata, amendment, replacement sections, or up to and including full reissuance of the report. The cost of correcting an error in the report shall be borne by the TTI Lab. Any such errors or inadvertent delays that occur in connection with the performance of the related testing contract will not constitute a breach of the testing contract.

THE TTI LAB WILL NOT BE LIABLE FOR ANY INDIRECT, CONSEQUENTIAL, PUNITIVE, OR OTHER DAMAGES SUFFERED BY THE ROADSIDE SAFETY POOLED FUND GROUP, WSDOT, OR ANY OTHER PERSON OR ENTITY, WHETHER SUCH LIABILITY IS BASED, OR CLAIMED TO BE BASED, UPON ANY NEGLIGENT ACT, OMISSION, ERROR, CORRECTION OF ERROR, DELAY, OR BREACH OF AN OBLIGATION BY THE TTI LAB.

1. Report No.				rt Documentation Page
	2. Government Access	ion No.	3. Recipient's Catalog	j No.
4. Title and Subtitle DETERMINATION OF LENGTH-OF-NEED FOR GUARDRA WITHOUT ANCHORAGE		GUARDRAIL	5. Report Date August 2023 6. Performing Organiz	zation Code
^{7. Author(s)} James C. Kovar, Daniel Curran, Heath Buttery, Wi Schroeder, and Bill L. Griffith		'illiam	8. Performing Organiz Test Report No 1&2	
9. Performing Organization Name and Address Texas A&M Transportation Instit	ute Proving Grou	nd	10. Work Unit No. (TR	AIS)
3135 TAMU College Station, Texas 77843-31	C C		11. Contract or Grant I TPF-5(343)	No.
12. Sponsoring Agency Name and Address Washington State Department of Transportation Research Office MS 47372, Transportation Buildin Olympia, WA 98504-7372		ng	13. Type of Report and Technical Report September 201 2022	ort:
			14. Sponsoring Agenc	y Code
^{15. Supplementary Notes} Project Title: Determination of Le Name of Contacting Representa	•		•	
16. Abstract		d whitmore, and	Donna Hardy	
	to determine the am anchorage re tive, the research or to full-scale cras ream improved the ardrail bolt head ngth-of-need was ated a reduction is posts. This system the project object uture research ef	minimum length- quired to provide team performed sh testing. After a e predictive capa and rail slot inter again predicted t n this length-of-n em was then eval ctives. Conseque forts. This report	of-need of a Mid <i>MASH</i> complian computer simula crash test which bility of the simu action. Following hrough compute eed by including uated through fu ntly, the researc	nt redirective ations to predict h failed to meet lations by the improved r simulation. guardrail ill-scale crash h team
^{16. Abstract} The objective of this project was System (MGS) without downstre behavior. In pursuit of this object the minimum length-of-need prio project objectives, the research to improving the modeling of the gu modeling effort, the minimum len The research team then investig washers on the downstream end testing, but it again failed to mee prepared recommendations for fin	to determine the am anchorage re live, the research or to full-scale crass leam improved the lardrail bolt head ogth-of-need was ated a reduction is ated a reduction is posts. This system the project object uture research eff endations for future ardrail,	minimum length- quired to provide team performed sh testing. After a e predictive capa and rail slot inter again predicted t n this length-of-n em was then eval ctives. Conseque forts. This report are research.	of-need of a Mid <i>MASH</i> complian computer simula crash test which bility of the simu action. Following hrough compute eed by including uated through fu ntly, the researc documents the e	nt redirective ations to predict h failed to meet lations by g the improved r simulation. guardrail ill-scale crash h team efforts discussed

SI* (MODERN METRIC) CONVERSION FACTORS				
APPROXIMATE CONVERSIONS TO SI UNITS				
Symbol	When You Know	Multiply By	To Find	Symbol
		LENGTH		
in	inches	25.4	millimeters	mm
ft	feet	0.305	meters	m
yd	yards	0.914	meters	m
mi	miles	1.61	kilometers	km
		AREA		
in ²	square inches	645.2	square millimeters	mm ²
ft ²	square feet	0.093	square meters	m ²
yd²	square yards	0.836	square meters	m ²
ac	acres	0.405	hectares	ha
mi ²	square miles	2.59	square kilometers	km ²
a	a : I	VOLUME		
floz	fluid ounces	29.57	milliliters	mL
gal ft³	gallons	3.785	liters cubic meters	L m ³
	cubic feet	0.028 0.765	cubic meters	m ³
yd ³	cubic yards	nes greater than 1000L		m°
	NOTE. Volur			
oz	ounces	MASS 28.35	grams	a
lb	pounds	0.454	kilograms	g kg
Т	short tons (2000 lb)	0.907	megagrams (or metric ton")	Mg (or "t")
1		MPERATURE (exac		Nig (or t)
°F	Fahrenheit	5(F-32)/9	Celsius	°C
	1 differinen	or (F-32)/1.8	0013103	U
	FOR	CE and PRESSURE	or STRESS	
llhf				N
I IDI	poundforce	4.45	newtons	N
lbf lbf/in ²	poundforce poundforce per square inch	4.45 6.89	newtons kilopascals	N kPa
lbf/in ²	poundforce per square inch	6.89	kilopascals	
lbf/in ²	poundforce per square inch	6.89	kilopascals	
	poundforce per square inch APPROXIN	6.89	kilopascals	kPa
lbf/in ²	poundforce per square inch APPROXIN	6.89 MATE CONVERSION Multiply By	kilopascals	kPa
lbf/in ² Symbol	poundforce per square inch APPROXIM When You Know	6.89 MATE CONVERSION Multiply By LENGTH	kilopascals IS FROM SI UNITS To Find	kPa Symbol
lbf/in ² Symbol mm	poundforce per square inch APPROXIM When You Know millimeters	6.89 ATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09	kilopascals IS FROM SI UNITS To Find inches	kPa Symbol
Ibf/in ² Symbol mm m	poundforce per square inch APPROXIN When You Know millimeters meters	6.89 ATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621	kilopascals IS FROM SI UNITS To Find inches feet	kPa Symbol in ft
Ibf/in ² Symbol mm m m	poundforce per square inch APPROXIN When You Know millimeters meters meters kilometers	6.89 ATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA	kilopascals IS FROM SI UNITS To Find inches feet yards miles	kPa Symbol in ft yd mi
Ibf/in ² Symbol mm m km mm ²	poundforce per square inch APPROXIN When You Know millimeters meters meters kilometers square millimeters	6.89 ATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016	kilopascals IS FROM SI UNITS To Find inches feet yards miles square inches	kPa Symbol in ft yd mi in ²
Ibf/in ² Symbol mm m km km mm ² m ²	poundforce per square inch APPROXIN When You Know millimeters meters kilometers square millimeters square meters	6.89 ATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764	kilopascals IS FROM SI UNITS To Find inches feet yards miles square inches square feet	kPa Symbol in ft yd mi in ² ft ²
Ibf/in ² Symbol mm m km km mm ² m ² m ²	poundforce per square inch APPROXIN When You Know millimeters meters kilometers square millimeters square meters square meters square meters	6.89 ATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195	kilopascals IS FROM SI UNITS To Find inches feet yards miles square inches square feet square yards	kPa Symbol in ft yd mi in ² ft ² yd ²
Ibf/in ² Symbol mm m km km mm ² m ² ha	poundforce per square inch APPROXIN When You Know millimeters meters kilometers square millimeters square meters square meters hectares	6.89 ATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47	kilopascals IS FROM SI UNITS To Find inches feet yards miles square inches square feet square yards acres	kPa Symbol in ft yd mi in ² ft ² yd ² ac
Ibf/in ² Symbol mm m km km mm ² m ² m ²	poundforce per square inch APPROXIN When You Know millimeters meters kilometers square millimeters square meters square meters square meters	6.89 ATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386	kilopascals IS FROM SI UNITS To Find inches feet yards miles square inches square feet square yards	kPa Symbol in ft yd mi in ² ft ² yd ²
Ibf/in ² Symbol mm m km km mm ² m ² ha km ²	poundforce per square inch APPROXIN When You Know millimeters meters kilometers square millimeters square meters square meters hectares Square kilometers	6.89 ATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME	kilopascals S FROM SI UNITS To Find inches feet yards miles square inches square feet square yards acres square miles	kPa Symbol in ft yd mi in ² ft ² yd ² ac mi ²
Ibf/in ² Symbol mm m km km mm ² m ² ha km ² mL	poundforce per square inch APPROXIN When You Know millimeters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters	6.89 ATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034	kilopascals S FROM SI UNITS To Find inches feet yards miles square inches square feet square yards acres square miles fluid ounces	kPa Symbol in ft yd mi in ² ft ² yd ² ac mi ² oz
Ibf/in ² Symbol mm m km km ² m ² ha km ² ha km ²	poundforce per square inch APPROXIN When You Know millimeters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters	6.89 ATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264	kilopascals IS FROM SI UNITS To Find inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons	kPa Symbol in ft yd mi in ² ft ² yd ² ac mi ² oz gal
Ibf/in ² Symbol mm m km km mm ² m ² ha km ² mL L m ³	poundforce per square inch APPROXIN When You Know millimeters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters cubic meters	6.89 ATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314	kilopascals IS FROM SI UNITS To Find inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet	kPa Symbol in ft yd mi in ² ft ² yd ² ac mi ² oz gal ft ³
Ibf/in ² Symbol mm m km km ² m ² ha km ² ha km ²	poundforce per square inch APPROXIN When You Know millimeters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters	6.89 MATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 1.307	kilopascals IS FROM SI UNITS To Find inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons	kPa Symbol in ft yd mi in ² ft ² yd ² ac mi ² oz gal
Ibf/in ² Symbol mm m km km mm ² m ² ha km ² mL L m ³ m ³	poundforce per square inch APPROXIN When You Know millimeters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters cubic meters cubic meters	6.89 ATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS	kilopascals S FROM SI UNITS To Find inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards	kPa Symbol in ft yd mi in ² ft ² yd ² ac mi ² oz gal ft ³ yd ³
Ibf/in ² Symbol mm m km km mm ² m ² ha km ² mL L m ³ m ³ g	poundforce per square inch APPROXIN When You Know millimeters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters cubic meters cubic meters grams	6.89 MATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035	kilopascals S FROM SI UNITS To Find inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces	kPa Symbol in ft yd mi in ² ft ² yd ² ac mi ² oz gal ft ³ yd ³ oz
Ibf/in ² Symbol mm m km km mm ² m ² ha km ² mL L m ³ m ³ g kg	poundforce per square inch APPROXIN When You Know millimeters meters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters cubic meters cubic meters grams kilograms	6.89 MATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202	kilopascals S FROM SI UNITS To Find inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds	kPa Symbol in ft yd mi in ² ft ² yd ² ac mi ² oz gal ft ³ yd ³ oz lb
Ibf/in ² Symbol mm m km km mm ² m ² ha km ² mL L m ³ m ³ g	poundforce per square inch APPROXIN When You Know millimeters meters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters cubic meters cubic meters grams kilograms megagrams (or "metric ton"	6.89 MATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202) 0.103	kilopascals S FROM SI UNITS To Find inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2000lb)	kPa Symbol in ft yd mi in ² ft ² yd ² ac mi ² oz gal ft ³ yd ³ oz
Ibf/in ² Symbol mm m km mm ² m ² ha km ² mL L m ³ m ³ m ³ g kg Mg (or "t")	poundforce per square inch APPROXIN When You Know millimeters meters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters cubic meters cubic meters cubic meters grams kilograms megagrams (or "metric ton"	6.89 ATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 1.103 MPERATURE (exac	kilopascals S FROM SI UNITS To Find inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2000lb) t degrees)	kPa Symbol in ft yd mi in ² ft ² yd ² ac mi ² oz gal ft ³ yd ³ oz lb
Ibf/in ² Symbol mm m km km mm ² m ² ha km ² mL L m ³ m ³ g kg	poundforce per square inch APPROXIM When You Know millimeters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters cubic meters cubic meters cubic meters grams kilograms megagrams (or "metric ton"	6.89 ATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 1.103 MPERATURE (exac 1.8C+32	kilopascals S FROM SI UNITS To Find inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2000lb) t degrees) Fahrenheit	kPa Symbol in ft yd mi in ² ft ² yd ² ac mi ² oz gal ft ³ yd ³ oz lb T
Ibf/in ² Symbol mm m km mm ² m ² ha km ² mL L m ³ m ³ m ³ g kg Mg (or "t")	poundforce per square inch APPROXIN When You Know millimeters meters meters kilometers square millimeters square meters square meters hectares Square kilometers Square kilometers iliters cubic meters cubic meters cubic meters grams kilograms megagrams (or "metric ton" TE Celsius	6.89 ATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 1.103 MPERATURE (exact 1.8C+32 CE and PRESSURE	kilopascals S FROM SI UNITS To Find inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2000lb) t degrees) Fahrenheit or STRESS	kPa Symbol in ft yd mi in ² ft ² yd ² ac mi ² oz gal ft ³ yd ³ oz lb T °F
Ibf/in ² Symbol mm m km m ² m ² ha km ² mL L m ³ m ³ m ³	poundforce per square inch APPROXIM When You Know millimeters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters cubic meters cubic meters cubic meters grams kilograms megagrams (or "metric ton"	6.89 ATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 1.103 MPERATURE (exac 1.8C+32	kilopascals S FROM SI UNITS To Find inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2000lb) t degrees) Fahrenheit	kPa Symbol in ft yd mi in ² ft ² yd ² ac mi ² oz gal ft ³ yd ³ oz lb T

*SI is the symbol for the International System of Units

ACKNOWLEDGEMENTS

This research project was performed under a pooled fund program between the following States and Agencies. The authors acknowledge and appreciate their guidance and assistance.

Roadside Safety Research Pooled Fund Committee

Revised May 2023

<u>ALABAMA</u>

Wade Henry, P.E.

Assistant State Design Engineer Design Bureau, Final Design Division Alabama Dept. of Transportation 1409 Coliseum Boulevard, T-205 Montgomery, AL 36110 (334) 242-6464 henryw@dot.state.al.us

Stanley (Stan) C. Biddick, P.E.

State Design Engineer Design Bureau, Final Design Division Alabama Dept. of Transportation 1409 Coliseum Boulevard, T-205 Montgomery, AL 36110 (334) 242-6833 biddicks@dot.state.al.us

<u>ALASKA</u>

Mary F. McRae

Design and Construction Standards Engineer Alaska Depart. of Transportation & Public Facilities 3132 Channel Drive P.O. Box 112500 Juneau, AK 99811-2500 (907) 465-1222 mary.mcrae@alaska.gov

Cole Carnahan

Design and Construction Standards Engineering Assistant Alaska Depart. of Transportation & Public Facilities 3132 Channel Drive P.O. Box 112500 Juneau, AK 99811-2500 (907) 465-6955 cole.carnahan@alaska.gov

CALIFORNIA

Bob Meline, P.E. Caltrans Office of Materials and Infrastructure Division of Research and Innovation 5900 Folsom Blvd Sacramento, CA 95819 (916) 227-7031 Bob.Meline@dot.ca.gov

John Jewell, P.E.

Senior Crash Testing Engineer Office of Safety Innovation & Cooperative Research (916) 227-5824 John_Jewell@dot.ca.gov

COLORADO

Andy Pott, P.E. Senior Bridge Design and Construction Engineer Division of Project Support, Staff Bridge Design and Construction Management Colorado Dept. of Transportation (CDOT) 4201 E Arkansas Ave, 4th Floor Denver, CO 80222 303-512-4020 andrew.pott@state.co.us

Shawn Yu, P.E.

Miscellaneous (M) Standards and Specifications Unit Manager Division of Project Support, Construction Engineering Services (CES) Branch Colorado Dept. of Transportation (CDOT) 4201 E Arkansas Ave, 4th Floor Denver, CO 80222 303-757-9474 shawn.yu@state.co.us

TR No. 612061-08

David Kosmiski, P.E.

Miscellaneous (M) Standards Engineer Division of Project Support, Construction Engineering Services (CES) Branch Colorado Dept. of Transportation (CDOT) 4201 E Arkansas Ave, 4th Floor Denver, CO 80222 303-757-9021 david.kosmiski@state.co.us

Amin Fakhimalizad

Assistant Miscellaneous (M) Standards Engineer Division of Project Support, Construction Engineering Services (CES) Branch Colorado Dept. of Transportation (CDOT) 303-757-9229 amin.fakhimalizad@state.co.us

CONNECTICUT

David Kilpatrick State of Connecticut Depart. of Transportation 2800 Berlin Turnpike Newington, CT 06131-7546 (806) 594-3288 David.Kilpatrick@ct.gov

DELAWARE

Craig Blowers Construction Resource Engineer Construction Section Delaware DOT (302)760-2336 Craig.Blowers@delaware.gov

James Osborne

Traffic Safety Programs Manager Traffic Operations Delaware DOT (302)659-4651 James.Osborne@delaware.gov

FLORIDA

Richard Stepp Florida Department of Transportation Richard.Stepp@dot.state.fl.us

Derwood C. Sheppard, Jr., P.E.

State Roadway Design Engineer Florida Depart. of Transportation Roadway Design Office 605 Suwannee Street, MS-32 Tallahassee, FL 32399-0450 (850) 414-4334 Derwood.Sheppard@dot.state.fl.us

<u>IDAHO</u>

Marc Danley, P.E. Technical Engineer (208) 334-8558 Marc.danley@itd.idaho.gov

Kevin Sablan

Design/Traffic Engineer Idaho Transportation Department (208) 334-8558 Kevin.sablan@itd.idaho.gov

ILLINOIS

Martha A. Brown, P.E. Safety Design Bureau Chief Bureau of Safety Programs and Engineering Illinois Depart. of Transportation 2300 Dirksen Parkway, Room 005 Springfield, IL 62764 (217) 785-3034 Martha.A.Brown@illinois.gov

Edgar Galofre Safety Design Engineer (217) 558-9089 edgar.glofre@illinois.gov

IOWA

Daniel Harness Office of Design – Methods Iowa Department of Transportation Daniel.Harness@iowadot.us

Chris Poole

State Traffic Engineer Traffic and Safety Bureau Iowa Department of Transportation Chris.Poole@iowadot.us

LOUISIANA

Chris Guidry Bridge Manager Louisiana Transportation Center Bridge & Structural Design Section P.O. Box 94245 Baton Rouge, LA 79084-9245 (225) 379-1933 Chris.Guidry@la.gov

Carl Gaudry

Bridge Design Manager Bridge & Structural Design Section Louisiana Department of Transportation & Development Carl.Gaudry@la.gov

MARYLAND

Matamba Kabengele Traffic Engineer Office of Traffic and Safety Maryland State Highway Administration MKabengele@mdot.maryland.gov

MASSACHUSETTS

Alex Bardow Director of Bridges and Structure Massachusetts Depart. of Transportation 10 Park Plaza, Room 6430 Boston, MA 02116 (517) 335-9430 Alexander.Bardow@state.ma.us

James Danila State Traffic Engineer (857) 368-9640 James.danilla@state.ma.us

MICHIGAN

Carlos Torres, P.E. Crash Barrier Engineer Geometric Design Unit, Design Division Michigan Depart. of Transportation P. O. Box 30050 Lansing, MI 48909 (517) 335-2852 TorresC@michigan.gov

<u>MINNESOTA</u>

Khamsai Yang Design Standards Engineer Office of Project Management and Technical Support (651) 366-4622 Khamsai.Yang@state.mn.us

Brian Tang

Assistant Design Standards Engineer Office of Project Management and Technical Support Minnesota Department of Transportation (651) 366-4684 brian.tang@state.mn.us

MISSOURI

Sarah Kleinschmit, P.E. Policy and Innovations Engineer, Missouri Department of Transportation P.O. Box 270 Jefferson City, MO 65102 (573) 751-7412 sarah.kleinschmit@modot.mo.gov

Kaitlyn (Katy) Bower

Roadside Design Specialist Missouri Department of Transportation 573-472-9028 kaitlyn.bower@modot.mo.gov

NEW MEXICO

Brad Julian Traffic Technical Support Engineer (505) 827-3263 Brad.Julian@state.nm.us

<u>OHIO</u>

Don P. Fisher, P.E. Ohio Depart. of Transportation

1980 West Broad Street Mail Stop 1230 Columbus, OH 43223 (614) 387-6214 Don.fisher@dot.ohio.gov

OREGON

Christopher Henson Senior Roadside Design Engineer Oregon Depart. of Transportation Technical Service Branch 4040 Fairview Industrial Drive, SE Salem, OR 97302-1142 (503) 986-3561 Christopher.S.Henson@odot.state.or.us

PENNSYLVANIA

James A. Borino, Jr., P.E. Chief, Standards and Criteria Unit Highway Design and Technology Division Pennsylvania DOT (717) 612-4791 jborino@pa.gov

Evan Pursel

Senior Civil Engineer Highway Design and Technology Division Pennsylvania DOT (717) 705-8535 epursel@pa.gov

Nina Ertel

Project Development Engineer Highway Design and Technology Division Pennsylvania DOT (717) 425-7679 nertel@pa.gov

TEXAS

Chris Lindsey Transportation Engineer Design Division Texas Department of Transportation 125 East 11th Street Austin, TX 78701-2483 (512) 416-2750 Christopher.Lindsey@txdot.gov

Taya Retterer

TxDOT Bridge Standards Engineer Bridge Division Texas Department of Transportation (512) 416-2719 Taya.Retterer@txdot.gov

<u>UTAH</u>

Shawn Debenham

Traffic and Safety Division Utah Depart. of Transportation 4501 South 2700 West PO Box 143200 Salt Lake City UT 84114-3200 (801) 965-4590 sdebenham@utah.gov

WASHINGTON

Mustafa Mohamedali

Assistant Research Project Manager P.O. Box 47372 Olympia, WA 98504-7372 (360) 704-6307 mohamem@wsdot.wa.gov

Tim Moeckel

Roadside Safety Engineer Washington State Department of Transportation Development Division P.O. Box 47329 Olympia, WA 98504-7246 (360) 704-6377 moecket@wsdot.wa.gov

WEST VIRGINIA

Donna J. Hardy, P.E. Safety Programs Engineer West Virginia Depart. of Transportation – Traffic Engineering Building 5, Room A-550 1900 Kanawha Blvd E. Charleston, WV 25305-0430 (304) 558-9576 Donna.J.Hardy@wv.gov

Ted Whitmore

Traffic Services Engineer Traffic Engineering WV Division of Highways (304)414-7373 Ted.J.Whitmore@wv.gov

WISCONSIN

Erik Emerson, P.E.

Standards Development Engineer – Roadside Design Wisconsin Department of Transportation Bureau of Project Development 4802 Sheboygan Avenue, Room 651 P. O. Box 7916 Madison, WI 53707-7916 (608) 266-2842 Erik.Emerson@wi.gov

CANADA – ONTARIO

Kenneth Shannon, P. Eng. Senior Engineer, Highway Design (A)

Ontario Ministry of Transportation 301 St. Paul Street St. Catharines, ON L2R 7R4 CANADA (904) 704-3106 Kenneth.Shannon@ontario.ca

FEDERAL HIGHWAY ADMINISTRATION (FHWA)

WebSite: safety.fhwa.dot.gov

Richard B. (Dick) Albin, P.E.

Safety Engineer FHWA Resource Center Safety & Design Technical Services Team 711 S. Capital Olympia, WA 98501 (303) 550-8804 Dick.Albin@dot.gov

Eduardo Arispe

Research Highway Safety Specialist U.S. Department of Transportation Federal Highway Administration Turner-Fairbank Highway Research Center Mail Code: HRDS-10 6300 Georgetown Pike McLean, VA 22101 (202) 493-3291 Eduardo.arispe@dot.gov

Christine Black

Highway Safety Engineer Central Federal Lands Highway Division 12300 West Dakota Ave. Lakewood, CO 80228 (720) 963-3662 Christine.black@dot.gov TR No. 612061-08

Isbel Ramos-Reyes

Lead Safety and Transportation Operations Engineer (703) 948-1442 isbel.ramos-reyes@dot.gov

Matt Hinshaw, M.S., P.E.

Highway Safety Engineer Central Federal Lands Highway Division (360)619-7677 matthew.hinshaw@dot.gov

TEXAS A&M TRANSPORTATION INSTITUTE (TTI)

WebSite: tti.tamu.edu www.roadsidepooledfund.org

D. Lance Bullard. Jr., P.E.

Senior Research Engineer Roadside Safety & Physical Security Div. Texas A&M Transportation Institute 3135 TAMU College Station, TX 77843-3135 (979) 317-2855 L-Bullard@tti.tamu.edu

Roger P. Bligh, Ph.D., P.E.

Senior Research Engineer (979) 317-2703 R-Bligh@tti.tamu.edu

Nauman Sheikh

Research Scientist Roadside Safety and Physical Security Texas A&M Transportation Institute n-sheikh@tti.tamu.edu

Ariel Sheil

Research Assistant Roadside Safety and Physical Security Texas A&M Transportation Institute A-Sheil@tti.tamu.edu

REPORT AUTHORIZATION

REPORT REVIEWED BY:

— DocuSigned by: Glenn Schroeder

E692F9CB5047487...

Glenn Schroeder, Research Specialist Drafting & Reporting

DocuSigned by:

Adam Mayer —F7A06F754E02430...

Adam Mayer, Research Specialist Construction

DocuSigned by: Sobort Korman 6CF2C47B60EB409

Robert Kocman, Research Specialist Mechanical Instrumentation

- DocuSigned by:

Ken Reeves —60D556935596468..

Ken Reeves, Research Specialist Electronics Instrumentation

— DocuSigned by:

Pichard Badillo — 0F51DA60AB144F9...

Richard Badillo, Research Specialist Photographic Instrumentation

DocuSigned by: 17 25F29E1BAD624E8.

William J. L. Schroeder, Research Engineering Associate Research Evaluation and Reporting

DocuSigned by: Bill Griffith -44A122CB271845B

Bill L. Griffith, Research Specialist Quality Manager

---- DocuSigned by:

Matt Robinson

Matthew N. Robinson, Research Specialist Test Facility Manager & Technical Manager

DocuSigned by: ames hovar 4204176432C64A8...

James C. Kovar Assistant Research Scientist

This page intentionally left blank.

TABLE OF CONTENTS

Disclaimer	ii	
-	nents	
Report Author	ization	X
	nts	vii
List of Figures		
List of Tables		
	Introduction	1
	Computer Simulation Effort Evaluating Minimum	
	d	
	uction	
•	uter Simulation Results	
2.2.1.	162.5-ft Installation Without Downstream Anchorage	
2.2.2.	137.5-ft Installation Without Downstream Anchorage	
2.2.3.	125-ft Installation Without Downstream Anchorage	13
2.2.4.	87.5-ft Installation Without Downstream Anchorage	
2.2.5.	75-ft Installation Without Downstream Anchorage	19
2.2.6.	87.5-ft Installation Without Downstream Anchorage – 37.5 inches	~ ~
	Downstream Impact Point	22
2.2.7.	87.5-ft Installation Without Downstream Anchorage – 75-inches	0-
	Downstream Impact Point	
	uter Simulation Conclusions	
CHAPTER 3.	System Details	
	rticle and Installation Details	
	n Modifications during Tests	
	al Specifications	
	onditions	
	Test Requirements and Evaluation Criteria	
	Test Performed/Matrix	
	ation Criteria	
	Test Conditions	
	acility	
	e Tow and Guidance System	
	Acquisition Systems	
	Vehicle Instrumentation and Data Processing	
	Anthropomorphic Dummy Instrumentation	
5.3.3.	Photographic Instrumentation Data Processing	
CHAPTER 6.	MASH Test 3-11 (Crash Test No. 614721-01-2)	
	esignation and Actual Impact Conditions	
	er Conditions	
	ehicle	
	escription	
	ge to Test Installation	
6.6. Dama	ge to Test Vehicle	44

6.7.	Occupant Risk Factors	45
CHAPTE	ER 7. Computer Simulation Effort to Improve Redirective Capability	47
	Introduction	
7.2.	Simulation Model Improvements	47
	.2.1. 87.5-ft Guardrail System with 2.3 mm Slot Elements	
7.	.2.2. 87.5-ft Guardrail System with 2.4 mm Slot Elements	
7.	.2.3. 87.5-ft Guardrail System with 2.5 mm Slot Elements	
7.	.2.4. 87.5-ft Guardrail System with 2.6 mm Slot Elements	
7.	.2.5. 87.5-ft Guardrail System with 1 mm Slot Elements	
7.3.	Determination of Required Additional Length	
7.	.3.1. 112.5-ft Guardrail System with Refined Slot Mesh	73
7.	.3.2. 137.5-ft Guardrail System with Refined Slot Mesh	78
7.	.3.3. 162.5-ft Guardrail System with Refined Slot Mesh	
7.	.3.4. 175-ft Guardrail System with Refined Slot Mesh	
7.	.3.5. 187.5-ft Guardrail System with Refined Slot Mesh	93
7.	.3.6. 212.5-ft Guardrail System with Refined Slot Mesh	98
7.	.3.7. 225-ft Guardrail System with Refined Slot Mesh1	03
7.	.3.8. 237.5-ft Guardrail System with Refined Slot Mesh	80
7.	.3.9. 237.5-ft Guardrail System with Refined Slot Mesh and Increased	
	Bolt Retention1	13
7.	.3.10. 250-ft Guardrail System with Refined Slot Mesh	18
7.	.3.11. 262.5-ft Guardrail System with Refined Slot1	23
7.4.	GUARDRAIL WASHER EVALUATION1	28
7.	.4.1. 87.5-ft GUARDRAIL SYSTEM WITH REFINED SLOT MESH and	
	One End Washer1	29
7.	.4.2. 87.5-ft GUARDRAIL SYSTEM WITH REFINED SLOT MESH and	
	One End Washer, Improved Vehicle Model1	34
7.	.4.3. 87.5-ft GUARDRAIL SYSTEM WITH REFINED SLOT MESH and	
	two End Washers1	39
7.	.4.4. 75-ft GUARDRAIL SYSTEM WITH REFINED SLOT MESH and	
	two End Washers1	44
7.	.4.5. 62.5-ft GUARDRAIL SYSTEM WITH REFINED SLOT MESH and	
	two End Washers1	49
7.	.4.6. 50-ft GUARDRAIL SYSTEM WITH REFINED SLOT MESH and	
	two End Washers1	54
7.5.	Computer Simulation Conclusions1	59
	ER 8. MASH Test 3-11 (Crash Test No. 614721-01-1)	
8.1.		
8.2.	Weather Conditions1	
8.3.	Test Vehicle1	61
8.4.	Test Description1	62
8.5.	Damage to Test Installation1	
8.6.	-	
8.7.	Occupant Risk Factors1	
	ER 9. Summary and Conclusions1	
	Assessment of Test Results1	

9.2. Conclusions	. 167
References	. 169
Appendix A. Details of the Guardrail without downstream anchorage	
A.1. Details of the Guardrail without downstream anchorage for	
Test 614721-01-2	. 173
A.2. Details of the Guardrail without downstream anchorage for	
Test 614721-01-1	. 181
Appendix B. Supporting Certification Documents	. 189
B.1. Soil Properties	. 197
Appendix C. MASH Test 3-11 (Crash Test No. 614721-01-2)	201
C.1. Vehicle Properties and Information	. 201
C.2. Sequential Photographs	. 204
C.3. Vehicle Angular Displacements	. 207
C.4. Vehicle Accelerations	. 208
Appendix D. MASH Test 3-11 (Crash Test No. 614721-01-1)	. 211
D.1. Vehicle Properties and Information	. 211
D.2. Sequential Photographs	. 214
D.3. Vehicle Angular Displacements	
D.4. Vehicle Accelerations	

LIST OF FIGURES

Ρ	a	a	e
	u	м	6

Figure 2.1 Overhead View of 162.5-ft Long Guardrail System	3
Figure 2.2. Overhead View of Impact Point for 162.5-ft Long Guardrail System	
Simulation	
Figure 2.3. Overhead View Sequential Image Comparison	5
Figure 2.4. Upstream View Sequential Image Comparison	6
Figure 2.5. Overhead View of the 162.5-ft Guardrail System	
Figure 2.6. Overhead View of Impact Point for the 162.5-ft Guardrail System	
Figure 2.7. 162.5-ft Guardrail System – Overhead View	
Figure 2.8. 162.5-ft Guardrail System – Downstream View	
Figure 2.9. Overhead View of 137.5 ft Guardrail System	
Figure 2.10. Overhead View of Impact Point for 137.5 ft Guardrail System	. 10
Figure 2.11. 137.5 ft Guardrail System – Overhead View	. 11
Figure 2.12. 137.5 ft Guardrail System – Downstream View	. 12
Figure 2.13. Overhead View of 125 ft Guardrail System	
Figure 2.14. Overhead View of Impact Point for 125 ft Guardrail System	. 13
Figure 2.15. 125 ft Guardrail System – Overhead View	
Figure 2.16. 125 ft Guardrail System – Downstream View	
Figure 3.1. Details of Guardrail without downstream anchorage	. 31
Figure 3.2. Guardrail without downstream anchorage prior to Testing	. 32
Figure 4.1. Target CIP for MASH Test 3-11 (Crash Test Nos. 614721-01-1 & 2)	
on Guardrail without downstream anchorage.	. 35
Figure 6.1. Guardrail without downstream anchorage/Test Vehicle Geometrics for	
Test No. 614721-01-2	
Figure 6.2. Test Vehicle before Test No. 614721-01-2	
Figure 6.3. Guardrail without downstream anchorage after Test No. 614721-01-2	. 43
Figure 6.4. Test Vehicle after Test No. 614721-01-2.	
Figure 6.5. Interior of Test Vehicle after Test No. 614721-01-2.	. 45
Figure 6.6. Summary of Results for MASH Test 3-11 on Guardrail without	
downstream anchorage	
Figure 7.1. Overhead View of 2.2.8 Guardrail System	. 47
Figure 7.2. Overhead View of Impact Point for 2.2.8 Guardrail System	. 48
Figure 7.3. 87.5-ft Guardrail System with 2.3 mm Slot Elements – Overhead View	
of MASH Test 3-11	.49
Figure 7.4. 87.5-ft Guardrail System with 2.3 mm Slot Elements – Rear View of	
MASH Test 3-11	. 50
Figure 7.5. 87.5-ft Guardrail System with 2.3 mm Slot Elements – Downstream	
View of MASH Test 3-11	. 51
Figure 7.6. 87.5-ft Guardrail System with 2.3 mm Slot Elements – Front View of	
Downstream End Posts During MASH Test 3-11	
Figure 7.7. Overhead View of 87.5-ft Long Guardrail System	
Figure 7.8. Overhead View of Impact Point for 87.5-ft Long Guardrail System	. 53
Figure 7.9. 87.5-ft Guardrail System with 2.4 mm Slot Elements – Overhead View	
of MASH Test 3-11	. 54

Figure 7.10. 87.5-ft Guardrail System with 2.4 mm Slot Elements – Rear View of MASH Test 3-11	55
Figure 7.11. 87.5-ft Guardrail System with 2.4 mm Slot Elements – Downstream View of <i>MASH</i> Test 3-11	
Figure 7.12. 87.5-ft Guardrail System with 2.4 mm Slot Elements – Front View of Downstream Posts During <i>MASH</i> Test 3-11	
Figure 7.13. Overhead View of 87.5-ft Long Guardrail System	. 58
Figure 7.14. Overhead View of Impact Point for 87.5-ft Long Guardrail System Figure 7.15. 87.5-ft Guardrail System with 2.5 mm Slot Elements – Overhead	
View of <i>MASH</i> Test 3-11 Figure 7.16. 87.5-ft Guardrail System with 2.5 mm Slot Elements – Rear View of	59
MASH Test 3-11	60
Figure 7.17. 87.5-ft Guardrail System with 2.5 mm Slot Elements – Downstream View of MASH Test 3-11	61
Figure 7.18. 87.5-ft Guardrail System with 2.5 mm Slot Elements – Front View of Downstream Posts During <i>MASH</i> Test 3-11	62
Figure 7.19. Overhead View of 87.5-ft Long Guardrail System	
Figure 7.20. Overhead View of Impact Point for 87.5-ft Long Guardrail System	
Figure 7.21. 87.5-ft Guardrail System with 2.6 mm Slot Elements – Overhead View of <i>MASH</i> Test 3-11	64
Figure 7.22. 87.5-ft Guardrail System with 2.6 mm Slot Elements – Rear View of MASH Test 3-11	65
Figure 7.23. 87.5-ft Guardrail System with 2.6 mm Slot Elements – Downstream View of <i>MASH</i> Test 3-11	66
Figure 7.24. 87.5-ft Guardrail System with 2.6 mm Slot Elements – Front View of	
0	67
Figure 7.25. Overhead View of 87.5-ft Long Guardrail System	. 68
Figure 7.26. Overhead View of Impact Point for 87.5-ft Long Guardrail System Figure 7.27. 87.5-ft Guardrail System with 1 mm Slot Elements – Overhead View	. 68
of MASH Test 3-11	. 69
Figure 7.28. 87.5-ft Guardrail System with 1 mm Slot Elements – Rear View of MASH Test 3-11	70
Figure 7.29. 87.5-ft Guardrail System with 1 mm Slot Elements – Downstream View of MASH Test 3-11	71
Figure 7.30. 87.5-ft Guardrail System with 1 mm Slot Elements – Front View of	. / 1
Downstream Posts During MASH Test 3-11	72
Figure 7.31. Overhead View of 112.5-ft Long Guardrail System	73
Figure 7.32. Overhead View of Impact Point for 112.5-ft Long Guardrail System	
Figure 7.33. 112.5-ft Guardrail System with Refined Slot Mesh – Overhead View of MASH Test 3-11	
Figure 7.34. 112.5-ft Guardrail System with Refined Slot Mesh – Rear View of	
MASH Test 3-11	75
Figure 7.35. 112.5-ft Guardrail System with Refined Slot Mesh – Downstream View of MASH Test 3-11	76
Figure 7.36. 112.5-ft Guardrail System with Refined Slot Mesh – Front View of	
Downstream Posts During <i>MASH</i> Test 3-11	77

Figure 7.37. Overhead View of 137.5-ft Long Guardrail System	78
Figure 7.38. Overhead View of Impact Point for 137.5-ft Long Guardrail System	
Figure 7.39. 137.5-ft Guardrail System with Refined Slot Mesh – Overhead View	
of MASH Test 3-11	79
Figure 7.40. 137.5-ft Guardrail System with Refined Slot Mesh – Rear View of	
MASH Test 3-11	80
Figure 7.41. 137.5-ft Guardrail System with Refined Slot Mesh – Downstream	
View of MASH Test 3-11	81
Figure 7.42. 137.5-ft Guardrail System with Refined Slot Mesh – Front View of	
Downstream Posts During MASH Test 3-11	82
Figure 7.43. Overhead View of 162.5-ft Long Guardrail System	83
Figure 7.44. Overhead View of Impact Point for 162.5-ft Long Guardrail System	
Figure 7.45. 162.5-ft Guardrail System with Refined Slot – Overhead View of	
MASH Test 3-11	84
Figure 7.46. 162.5-ft Guardrail System with Refined Slot – Rear View of MASH	
Test 3-11	85
Figure 7.47. 162.5-ft Guardrail System with Refined Slot – Gut View of MASH	
Test 3-11	86
Figure 7.48. 162.5-ft Guardrail System with Refined Slot – Front View of	
Downstream Posts During MASH Test 3-11	87
Figure 7.49. Overhead View of 175-ft Long Guardrail System	88
Figure 7.50. Overhead View of Impact Point for 175-ft Long Guardrail System	88
Figure 7.51. 175-ft Guardrail System with Refined Slot Mesh – Overhead View of	
MASH Test 3-11	89
Figure 7.52. 175-ft Guardrail System with Refined Slot Mesh – Rear View of	
MASH Test 3-11	90
Figure 7.53. 175-ft Guardrail System with Refined Slot Mesh – Downstream View	
of MASH Test 3-11	91
Figure 7.54. 175-ft Guardrail System with Refined Slot Mesh – Front View of	
Downstream Posts During MASH Test 3-11	92
Figure 7.55. Overhead View of 187.5-ft Long Guardrail System	93
Figure 7.56. Overhead View of Impact Point for 187.5-ft Long Guardrail System	93
Figure 7.57. 187.5-ft Guardrail System with Refined Slot – Overhead View of	
MASH Test 3-11	94
Figure 7.58. 187.5-ft Guardrail System with Refined Slot – Rear View of MASH	
Test 3-11	95
Figure 7.59. 187.5-ft Guardrail System with Refined Slot – Downstream View of	
MASH Test 3-11	96
Figure 7.60. 187.5-ft Guardrail System with Refined Slot – Front View of	
Downstream Posts During MASH Test 3-11	97
Figure 7.61. Overhead View of 212.5-ft Long Guardrail System	
Figure 7.62. Overhead View of Impact Point for 212.5-ft Long Guardrail System	
Figure 7.63. 212.5-ft Guardrail System with Refined Slot – Overhead View of	
MASH Test 3-11	99
Figure 7.64. 212.5-ft Guardrail System with Refined Slot – Rear View of MASH	
Test 3-11	. 100

Figure 7.65. 212.5-ft Guardrail System with Refined Slot – Downstream View of MASH Test 3-11	101
Figure 7.66. 212.5-ft Guardrail System with Refined Slot – Front View of	101
Downstream Posts During MASH Test 3-11	102
Figure 7.67. Overhead View of 225-ft Long Guardrail System	
Figure 7.68. Overhead View of Impact Point for 225-ft Long Guardrail System	
Figure 7.69. 225-ft Guardrail System with Refined Slot – Overhead View of	100
•	104
Figure 7.70. 225-ft Guardrail System with Refined Slot – Rear View of <i>MASH</i>	104
	105
Figure 7.71. 225-ft Guardrail System with Refined Slot – Downstream View of	100
•	106
Figure 7.72. 225-ft Guardrail System with Refined Slot – Front View of	100
	107
Figure 7.73. Overhead View of 237.5-ft Long Guardrail System	
Figure 7.74. Overhead View of Impact Point for 237.5-ft Long Guardrail System	
Figure 7.75. 237.5-ft Guardrail System with Refined Slot – Overhead View of	100
	109
Figure 7.76. 237.5-ft Guardrail System with Refined Slot – Rear View of MASH	103
	110
Figure 7.77. 237.5-ft Guardrail System with Refined Slot – Downstream View of	110
MASH Test 3-11	111
Figure 7.78. 237.5-ft Guardrail System with Refined Slot – Front View of	
Downstream Posts During MASH Test 3-11	112
Figure 7.79. Overhead View of 237.5-ft Long Guardrail System	
Figure 7.80. Overhead View of Impact Point for 237.5-ft Long Guardrail System	
Figure 7.81. 237.5-ft Guardrail System with Refined Slot and Improved Bolt	115
Retention– Overhead View of MASH Test 3-11	111
Figure 7.82. 237.5-ft Guardrail System with Refined Slot and Improved Bolt	114
Retention – Rear View of MASH Test 3-11	115
Figure 7.83. 237.5-ft Guardrail System with Refined Slot and Improved Bolt	115
	116
Retention – Downstream View of MASH Test 3-11	110
Figure 7.84. 237.5-ft Guardrail System with Refined Slot and Improved Bolt	447
Retention – Front View of Downstream Posts During MASH Test 3-11	
Figure 7.85. Overhead View of 250-ft Long Guardrail System	
Figure 7.86. Overhead View of Impact Point for 250-ft Long Guardrail System	118
Figure 7.87. 250-ft Guardrail System with Refined Slot – Overhead View of	
MASH Test 3-11	119
Figure 7.88. 250-ft Guardrail System with Refined Slot – Rear View of MASH	
Test 3-11	120
Figure 7.89. 250-ft Guardrail System with Refined Slot – Downstream View of	
MASH Test 3-11	121
Figure 7.90. 250-ft Guardrail System with Refined Slot – Front View of	
Downstream Posts During MASH Test 3-11	
Figure 7.91. Overhead View of 262.5-ft Long Guardrail System	
Figure 7.92. Overhead View of Impact Point for 262.5-ft Long Guardrail System	123

Figure 7.93. 262.5-ft Guardrail System with Refined Slot Mesh – Overhead View	
	124
Figure 7.94. 262.5-ft Guardrail System with Refined Slot Mesh – Rear View of MASH Test 3-11	125
	125
Figure 7.95. 262.5-ft Guardrail System with Refined Slot Mesh – Downstream View of MASH Test 3-11	126
Figure 7.96. 262.5-ft Guardrail System with Refined Slot Mesh – Front View of	120
Downstream Posts During MASH Test 3-11	127
Figure 7.97. 2.2.23 – Mounted Guardrail Washer	
Figure 7.98. Overhead View of 87.5-ft Long Guardrail System	
Figure 7.99. Overhead View of Impact Point for 87.5-ft Long Guardrail System	
Figure 7.100. 87.5-ft Guardrail System with Refined Slot and End Washer –	123
Overhead View of MASH Test 3-11	120
	130
Figure 7.101. 87.5-ft Guardrail System with Refined Slot and End Washer – Rear	101
View of MASH Test 3-11	131
Figure 7.102. 87.5-ft Guardrail System with Refined Slot and End Washer –	400
Downstream View of MASH Test 3-11	132
Figure 7.103. 87.5-ft Guardrail System with Refined Slot and End Washer – Front	400
View of Downstream Posts During MASH Test 3-11	
Figure 7.104. Overhead View of 87.5-ft Long Guardrail System	
Figure 7.105. Overhead View of Impact Point for 87.5-ft Long Guardrail System	134
Figure 7.106. 87.5-ft Guardrail System with Refined Slot and End Washer –	
Overhead View of MASH Test 3-11	135
Figure 7.107. 87.5-ft Guardrail System with Refined Slot and End Washer – Rear	
View of MASH Test 3-11	136
Figure 7.108. 87.5-ft Guardrail System with Refined Slot and End Washer –	
	137
Figure 7.109. 87.5-ft Guardrail System with Refined Slot and End Washer – Front	
View of Downstream Posts During MASH Test 3-11	
Figure 7.110. Overhead View of 87.5-ft Long Guardrail System	
Figure 7.111. Overhead View of Impact Point for 87.5-ft Long Guardrail System	139
Figure 7.112. 87.5-ft Guardrail System with Refined Slot and Two End Washers	
	140
Figure 7.113. 87.5-ft Guardrail System with Refined Slot and Two End Washers	
– Rear View of <i>MASH</i> Test 3-11	141
Figure 7.114. 87.5-ft Guardrail System with Refined Slot and Two End Washers	
– Downstream View of MASH Test 3-11	142
Figure 7.115. 87.5-ft Guardrail System with Refined Slot and Two End Washers	
 Front View of Downstream Posts During MASH Test 3-11 	
Figure 7.116. Overhead View of 75-ft Long Guardrail System	144
Figure 7.117. Overhead View of Impact Point for 75-ft Long Guardrail System	144
Figure 7.118. 75-ft Guardrail System with Refined Slot and Two End Washers –	
Overhead View of MASH Test 3-11	145
Figure 7.119. 75-ft Guardrail System with Refined Slot and Two End Washers –	
Rear View of MASH Test 3-11	146

Figure 7.120. 75-ft Guardrail System with Refined Slot and Two End Washers –	
o	. 147
Figure 7.121. 75-ft Guardrail System with Refined Slot and Two End Washers –	
Front View of Downstream Posts During MASH Test 3-11	. 148
Figure 7.122. Overhead View of 62.5-ft Long Guardrail System	
Figure 7.123. Overhead View of Impact Point for 62.5-ft Long Guardrail System	
Figure 7.124. 62.5-ft Guardrail System with Refined Slot and Two End Washers	
– Overhead View of MASH Test 3-11	. 150
Figure 7.125. 62.5-ft Guardrail System with Refined Slot and Two End Washers	
– Rear View of <i>MASH</i> Test 3-11	. 151
Figure 7.126. 62.5-ft Guardrail System with Refined Slot and Two End Washers	
– Downstream View of MASH Test 3-11	. 152
Figure 7.127. 62.5-ft Guardrail System with Refined Slot and Two End Washers	-
– Front View of Downstream Posts During MASH Test 3-11	. 153
Figure 7.128. Overhead View of 50-ft Long Guardrail System	
Figure 7.129. Overhead View of Impact Point for 50-ft Long Guardrail System	
Figure 7.130. 50-ft Guardrail System with Refined Slot and Two End Washers –	
Overhead View of <i>MASH</i> Test 3-11	155
Figure 7.131. 50-ft Guardrail System with Refined Slot and Two End Washers –	
Rear View of MASH Test 3-11	156
Figure 7.132. 50-ft Guardrail System with Refined Slot and Two End Washers –	
Downstream View of MASH Test 3-11	157
Figure 7.133. 50-ft Guardrail System with Refined Slot and Two End Washers –	
Front View of Downstream Posts During MASH Test 3-11	158
Figure 8.1. Guardrail without downstream anchorage/Test Vehicle Geometrics for	100
Test No. 614721-01-1.	161
Figure 8.2. Test Vehicle before Test No. 614721-01-1	
Figure 8.3. Guardrail without downstream anchorage after Test No. 614721-01-1	
Figure 8.4. Test Vehicle after Test No. 614721-01-1.	
Figure 8.5. Interior of Test Vehicle after Test No. 614721-01-1.	164
Figure 8.6. Summary of Results for <i>MASH</i> Test 3-11 on Guardrail without	104
downstream anchorage.	166
Table 9.1. Assessment Summary for MASH TL-3 Tests on the Guardrail without	100
downstream anchorage.	167
Figure C.1. Sequential Photographs for Test No. 614721-01-2 (Overhead and	107
Frontal Views)	204
Figure C.1. Sequential Photographs for Test No. 614721-01-2 (Overhead and	. 204
Frontal Views) (Continued).	205
Figure C.2. Sequential Photographs for Test No. 614721-01-2 (Rear View)	
Figure C.3. Vehicle Angular Displacements for Test No. 614721-01-2.	. 201
Figure C.4. Vehicle Longitudinal Accelerometer Trace for Test No. 614721-01-2	200
(Accelerometer Located at Center of Gravity)	. 208
Figure C.5. Vehicle Lateral Accelerometer Trace for Test No. 614721-01-2	200
(Accelerometer Located at Center of Gravity)	. 209
Figure C.6. Vehicle Vertical Accelerometer Trace for Test No. 614721-01-2	040
(Accelerometer Located at Center of Gravity)	210

214
216
217
218
219
220

LIST OF TABLES

	Page
Table 3.2. Soil Strength, Test 614721-01-2	
Table 3.1. Soil Strength, Test 614721-01-1	
Table 4.1. Test Conditions and Evaluation Criteria Specified for MASH TL-3	
Longitudinal Barriers	35
Table 4.2. Evaluation Criteria Required for MASH TL-3 Longitudinal Barriers	36
Table 6.1. Events during Test No. 614721-01-2	42
Table 6.2. Post Movement/Lean after Test No. 614721-01-2	44
Table 6.3. Occupant Risk Factors for Test No. 614721-01-2.	45
Table 8.1. Events during Test No. 614721-01-1	162
Table 8.2. Post Deflections after Test 614721-01-1	163
Table 8.3. Occupant Risk Factors for Test No. 614721-01-1.	165
Table B.1. Summary of Strong Soil Test Results for Establishing	
Installation Procedure.	197
Table B.2. Test Day Static Soil Strength Documentation for Test No. 614721-01-2	2 198
Table B.3. Test Day Static Soil Strength Documentation for Test No. 614721-01-7	
Table C.1. Vehicle Properties for Test No. 614721-01-2	
Table C.2. Exterior Crush Measurements for Test No. 614721-01-2	202
Table C.3. Occupant Compartment Measurements for Test No. 614721-01-2	203
Table D.1. Vehicle Properties for Test No. 614721-01-1	
Table D.2. Exterior Crush Measurements for Test No. 614721-01-1	212
Table D.3. Occupant Compartment Measurements for Test No. 614721-01-1	213

This page intentionally left blank.

CHAPTER 1. INTRODUCTION

Typical Midwest Guardrail Systems (MGS) are anchored at both ends with a termination that is designed to resist the tensile load caused by vehicular impacts. Certain situations may dictate a guardrail system be left without this termination hardware at one end. This most frequently occurs during a construction or repair phase when there is a temporary interruption in work prior to the installation of one termination. Since both anchors have not been installed in these situations, the posts in the guardrail system must successfully resist the tensile load caused by the impact. Therefore, the guardrail system will need to be of sufficient length to successfully resist this impact loading.

The primary objective of this study is to determine the minimum required length of guardrail installation which does not have anchorage at the downstream end but still provides redirective behavior. This system must maintain connectivity between the wbeam rail and the most downstream post. This would promote the ability of the guardrail system to successfully redirect vehicles during impact.

This report documents the test installations, the computer simulation effort, the crash test results, and the performance assessment of the guardrail without downstream anchorage for Manual for Assessing Safety Hardware (1) MASH Test 3-11 evaluation criteria.

This page intentionally left blank.

CHAPTER 2. COMPUTER SIMULATION EFFORT EVALUATING MINIMUM LENGTH-OF-NEED

2.1. INTRODUCTION

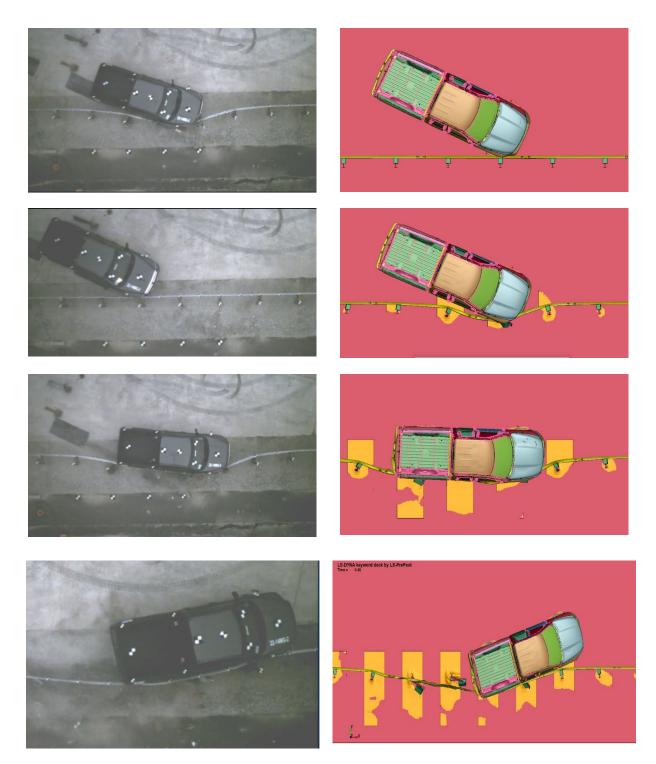

A finite element analysis (FEA) model was developed to replicate the test installation used by the Midwest Roadside Safety Facility (MwRSF) in test number 2214MG-2 (2). This test article consisted of a 175-ft long installation of w-beam guardrail. The top of rail was positioned at 31-inches above grade. The splices between rail sections were located at midspan between posts. The W6x9 posts were embedded 40-inches below grade.

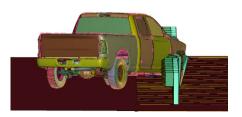
The model developed in this computer simulation effort replicated the conditions stated above, with the exception of the installation length. The guardrail system was modeled as 162.5-ft, instead of 175-ft due to the specific modeling technique used to represent the end terminations in full-scale testing. Instead of explicitly modeling the end terminations, the researchers used spring elements to provide the tensile resistance. These spring elements have been used in previous simulation efforts and have been verified as reasonably representing the tensile load resistance exhibited in full-scale testing. With the spring elements, the length of guardrail was shortened to represent that of the guardrail evaluated in the crash test, excluding the end terminations. Figure 2.1 shows an overhead view of the FEA model of the guardrail installation. The initial simulations were intended to verify the predictive performance of the FEA models using the data collected during the MwRSF Crash Test 2214MG-2. The vehicle models utilized in the simulation efforts were originally developed by George Mason University through the Center for Collision Safety and Analysis, later refined by TTI researchers, and successfully implemented in previous simulation efforts.

The system was evaluated using a computer simulated MASH Test 3-11 (3). The 2270P MASH pickup truck impacted the guardrail system at 62.94 mi/h with an impact angle of 25.5°, which matched the impact conditions in MwRSF Test 2214MG-2. The impact point was 104-ft from the downstream end of the rail and is shown below in Figure 2.2.

Figure 2.2. Overhead View of Impact Point for 162.5-ft Long Guardrail System Simulation

The system reasonably predicted the performance of the guardrail system evaluated in MwRSF Test 2214MG-2. Figure 2.3 and Figure 2.4 show a comparison of the sequential images from both the computer simulation and the physical crash test. The researchers further confirmed the predictive performance of the individual model components in other research projects for the Roadside Safety Pooled Fund, including the *Testing of Midwest Guardrail Systems with Reduced Post Spacing for MASH Compliance* and the *Design and Testing of a MASH TL-3 Thrie-Beam System for Roadside and Median Applications.* These projects utilized components from this model and were compared against various crash tests to ensure adequate predictive performance.




Figure 2.3. Overhead View Sequential Image Comparison

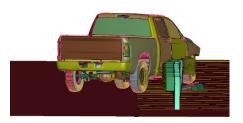


Figure 2.4. Upstream View Sequential Image Comparison

2.2. COMPUTER SIMULATION RESULTS

To evaluate the minimum required length-of-need for a MGS without downstream anchorage, a parametric analysis was completed with computer simulations. Each iteration of computer simulations adjusted the overall length of the guardrail system to achieve a crashworthy result. If the test vehicle successfully contained and redirected the vehicle, and the downstream end of the guardrail maintained connectivity to the posts, the length of the system was shortened. This process was repeated until the downstream end of the guardrail system lost connectivity to the posts or the guardrail failed to stably contain and redirect the test vehicle.

2.2.1. 162.5-ft Installation Without Downstream Anchorage

This simulation included a 162.5-ft long guardrail system without downstream anchorage. Figure 2.5 shows an overhead view of the finite element model. The system was evaluated using a computer simulated MASH Test 3-11. The 2270P MASH pickup truck impacted the guardrail system at 62 mi/h with an impact angle of 25°. The impact point was 103.8-ft from the downstream end of the rail and is shown below in Figure 2.6.

Figure 2.5. Overhead View of the 162.5-ft Guardrail System

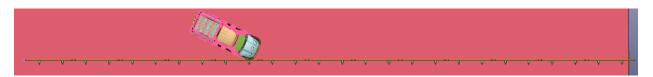
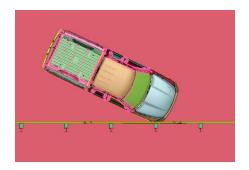
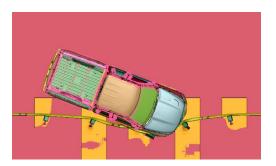
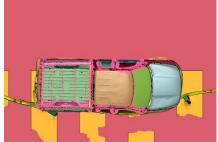
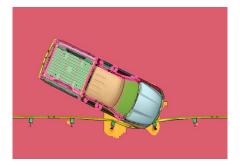




Figure 2.6. Overhead View of Impact Point for the 162.5-ft Guardrail System

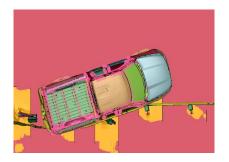

Sequential photos of the computer simulation can be seen in the figures below. The system performed well in the simulated MASH Test 3-11 by successfully containing and redirecting the test vehicle. After exiting the system, the test vehicle remained upright and stable. Because of the successful performance, the guardrail system was shortened, and this resulting iteration can be found in the following section.

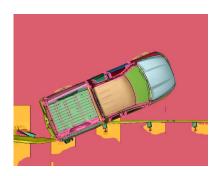
0.02 s



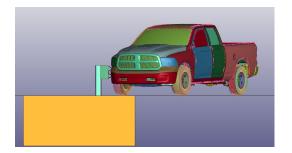
0.135 s



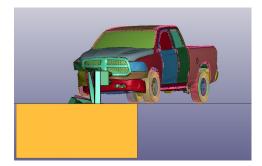



0.075 s

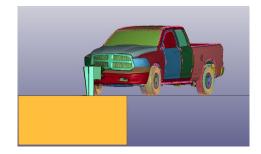
0.175 s

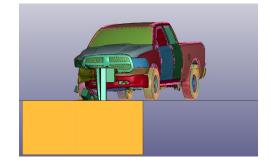


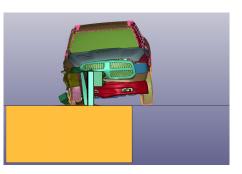
0.48 s



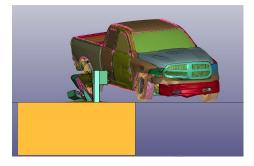
0.600 s




0.02 s



0.075 s


0.175 s

0.48 s

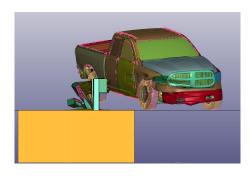
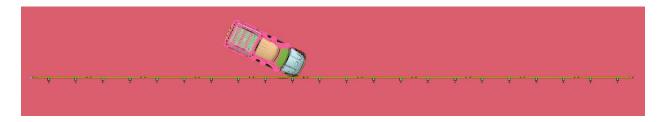
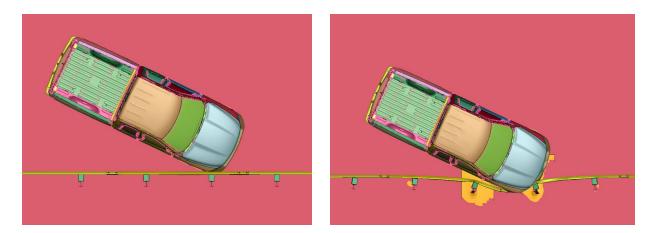


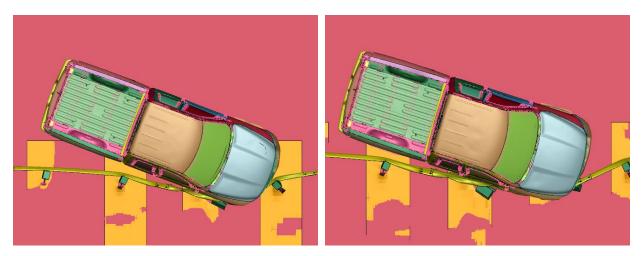
Figure 2.8. 162.5-ft Guardrail System – Downstream View


2.2.2. 137.5-ft Installation Without Downstream Anchorage

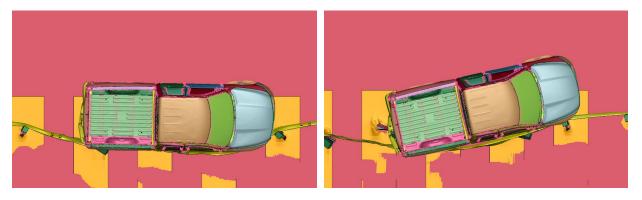
The FEA model discussed above in section 2.2.1 was shortened by removing two 12.5-ft long rail sections from the downstream side. Therefore, this model included a 137.5-ft long guardrail installation. Figure 2.9 shows an overhead view of the finite element model.


Figure 2.9. Overhead View of 137.5 ft Guardrail System

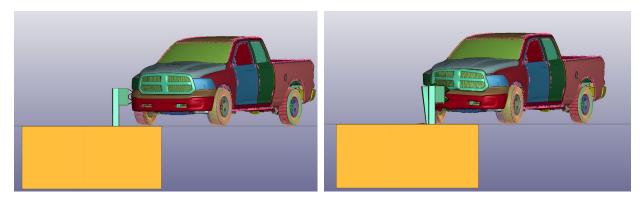
The system was evaluated using a simulated MASH test 3-11. The 2270P MASH pickup truck impacted the guardrail system at 62 mi/h with an impact angle of 25°. The impact point was 79-ft from the downstream end of the rail and is shown below in Figure 2.10.

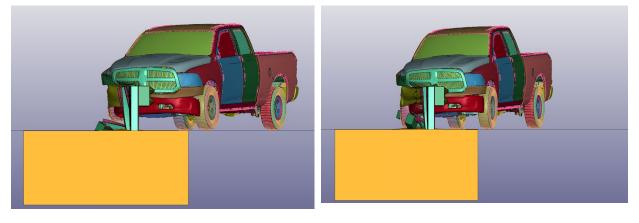

Figure 2.10. Overhead View of Impact Point for 137.5 ft Guardrail System

Sequential photos of the computer simulation can be seen in the figures below. The system performed well in the simulated MASH Test 3-11. The guardrail system without downstream anchorage successfully contained and redirected the test vehicle. After exiting the system, the test vehicle remained upright and stable. Because of the successful performance, the guardrail system was shortened, and this resulting iteration can be found in section 2.2.3.



0.135 s

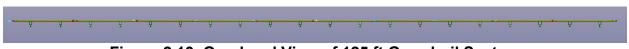
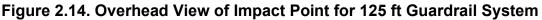


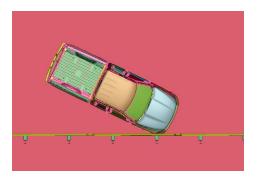

0.43 s

0.02 s

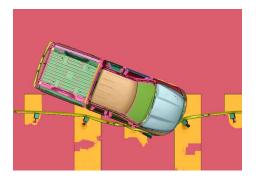
2.2.3. 125-ft Installation Without Downstream Anchorage

The FEA model discussed above in section 2.2.2 was shortened by removing one 12.5-ft long rail section from the downstream side. Therefore, this model included a 125-ft long guardrail installation. Figure 2.13 shows an overhead view of the finite element model.

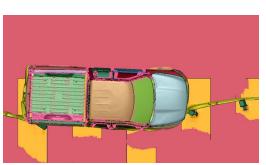



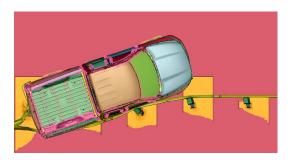

Figure 2.13. Overhead View of 125 ft Guardrail System

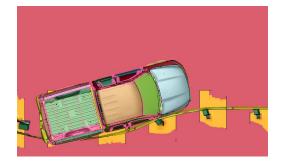
The system was evaluated using a computer simulated MASH Test 3-11. The 2270P MASH pickup truck impacted the guardrail system at 62 mi/h with an impact angle of 25°. The impact point was 66.3-ft from the downstream end of the rail and is shown below in Figure 2.14.


Sequential photos of the computer simulation can be seen in the figures below. The system performed well in the simulated MASH Test 3-11. The guardrail system without downstream anchorage successfully contained and redirected the test vehicle. After exiting the system, the test vehicle remained upright and stable. Because of the successful performance, the guardrail system was shortened, and this resulting iteration can be found in section 2.2.4.

0.02 s


0.075 s

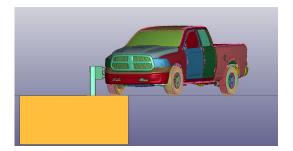
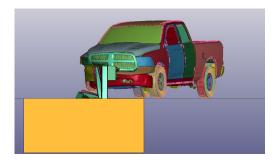

0.135 s

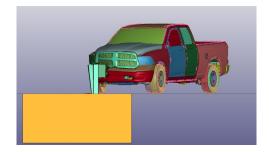

0.175 s

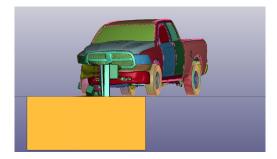
0.30 s

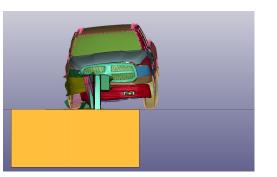
0.520 s

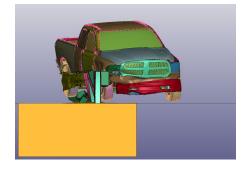
0.48 s

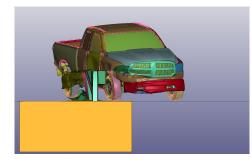





Figure 2.15. 125 ft Guardrail System – Overhead View


0.02 s


0.135 s


0.075 s


0.175 s

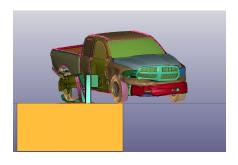


Figure 2.16. 125 ft Guardrail System – Downstream View

2.2.4. 87.5-ft Installation Without Downstream Anchorage

The iterative process of shortening the guardrail system after successful runs was repeated several more times. Consequently, the FEA model discussed above in section 2.2.3 was shortened by removing several 12.5-ft long rail sections from both the downstream and upstream side. This model resulted in an 87.5-ft long guardrail installation. Figure 2.17 shows an overhead view of the finite element model.

Figure 2.17. Overhead View of 87.5 ft Guardrail System

The system was evaluated using a computer simulated MASH Test 3-11. The 2270P MASH pickup truck impacted the guardrail system at 62 mi/h with an impact angle of 25°. The impact point was 66.4-ft from the downstream end of the rail and is shown below in Figure 2.18.

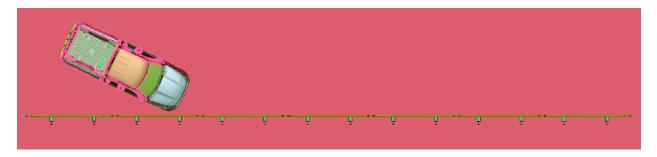
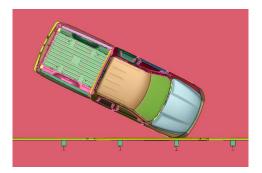
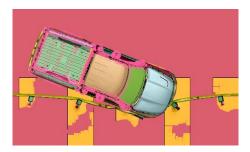
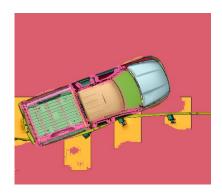
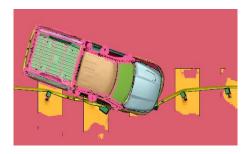




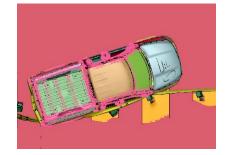
Figure 2.18. Overhead View of Impact Point for 87.5 ft Guardrail System

Sequential photos of the computer simulation can be seen in the figures below. The system performed well in the simulated MASH Test 3-11. The guardrail system without downstream anchorage successfully contained and redirected the test vehicle. After exiting the system, the test vehicle remained upright and stable. Because of the successful performance, the guardrail system was shortened, and this resulting iteration can be found in section 2.2.5.


0.02 s

0.135 s

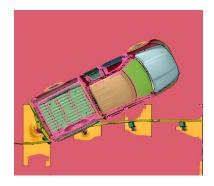
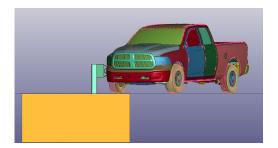
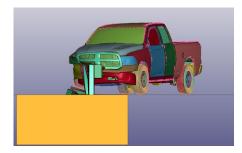

0.30 s

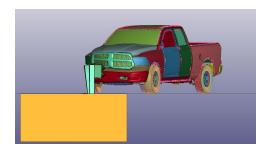


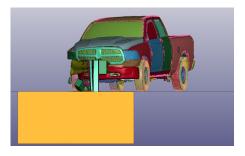
0.075 s

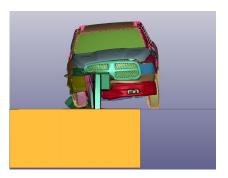
0.175 s

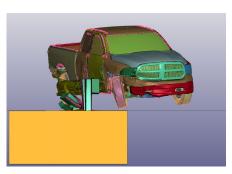
0.48 s


Figure 2.19. 87.5-ft Guardrail System – Overhead View


0.02 s


0.135 s


0.075 s


0.175 s

0.48 s

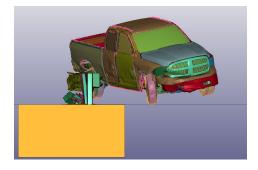


Figure 2.20. 87.5-ft Guardrail System – Downstream View

2.2.5. 75-ft Installation Without Downstream Anchorage

The FEA model discussed above in section 2.2.4 was shortened by removing one 12.5-ft long rail section from the downstream side. Therefore, this model included a 75-ft long guardrail installation. Figure 2.21 shows an overhead view of the finite element model.

Figure 2.21. Overhead View of 75 ft Guardrail System

The system was evaluated using a simulated MASH Test 3-11. The 2270P MASH pickup truck impacted the guardrail system at 62 mi/h with an impact angle of 25°. The impact point was 53.8-ft from downstream end of the rail and is shown below in Figure 2.22.

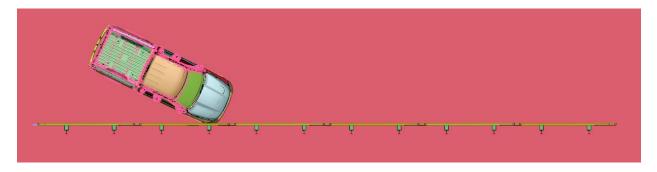
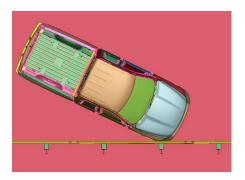
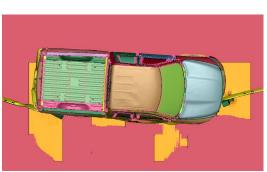



Figure 2.22. Overhead View of Impact Point for 75 ft Guardrail System

Sequential photos of the computer simulation can be seen in the figures below. During the impact, the w-beam rail was pulled off the downstream end posts and consequently lost its ability to redirect the pickup truck. Additionally, the end of the simulation showed the truck overrode the guardrail. Because of these two behaviors, the researchers deemed this length to be unacceptable. Therefore, the 87.5-ft length discussed in 2.2.4 was determined to be the shortest length required to provide redirective behavior.

0.02 s

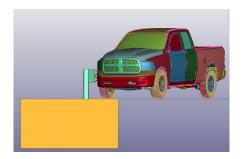

0.135 s

0.075 s

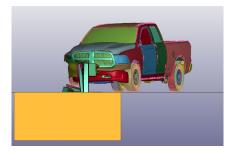
0.175 s

0.30 s

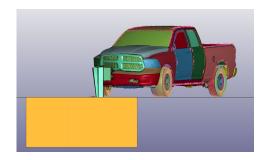
0.520 s

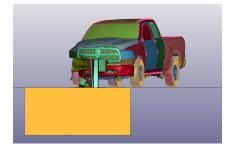


0.48 s

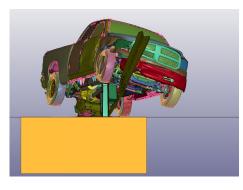


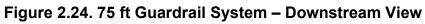
0.600 s

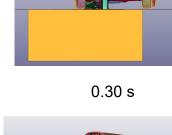


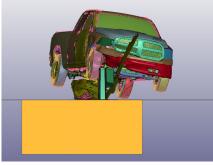

0.02 s


0.135 s

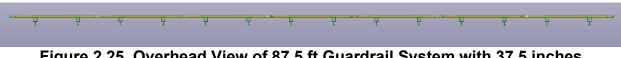

0.075 s


0.175 s




0.48 s

0.600 s



2.2.6. 87.5-ft Installation Without Downstream Anchorage – 37.5 inches Downstream Impact Point

In the previous simulations, the shortest length of guardrail installation to provide redirective behavior was determined to be 87.5-ft. The researchers began to then determine the location on the installation which causes an vehicle to gate through or override the guardrail system. In this pursuit, this simulation was performed with the impact point 37.5-inches downstream from the impact point used in section 2.2.4. This equates to 63.3-ft from the downstream end of the installation. Figure 2.25 shows an overhead view of the finite element model.

Figure 2.25. Overhead View of 87.5 ft Guardrail System with 37.5 inches Downstream Impact Point

The system was evaluated using a simulated MASH Test 3-11. The 2270P MASH pickup truck impacted the guardrail system at 62 mi/h with an impact angle of 25°. The impact point was 63.3-ft from the downstream end of the rail and is shown below in Figure 2.26.

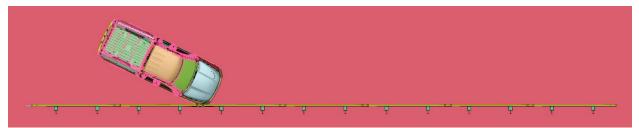
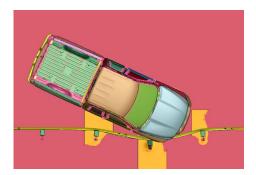


Figure 2.26. Overhead View of Impact Point for 87.5 ft Guardrail System with 37.5 inches Downstream Impact Point


Sequential photos of the computer simulation can be seen in the figures below. The system performed well in the computer simulated MASH Test 3-11. The guardrail system without downstream anchorage successfully contained and redirected the test vehicle. After exiting the system, the test vehicle remained upright and stable. Because of the successful performance, the impact point was shifted 37.5-inches downstream and this resulting iteration can be found in section 2.2.7.

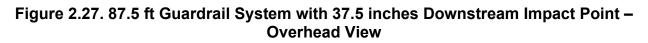
0.02 s

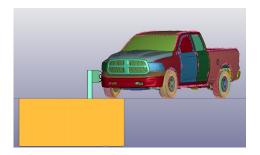
0.135 s

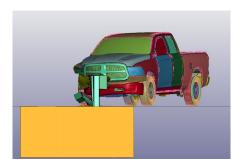
0.075 s

0.175 s

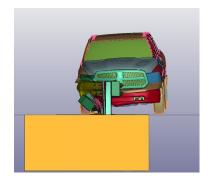
0.30 s

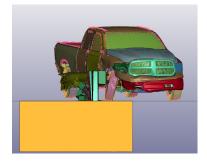

0.520 s

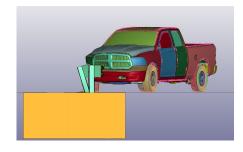


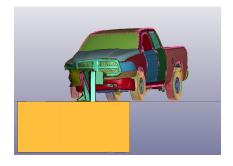


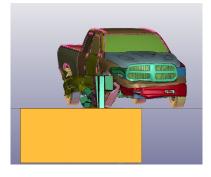
0.580 s



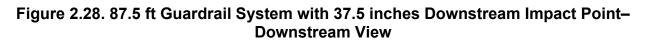

0.02 s


0.135 s




0.520 s

0.075 s

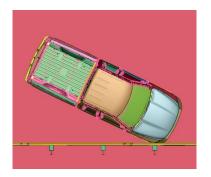

0.175 s

0.48 s

0.580 s

2.2.7. 87.5-ft Installation Without Downstream Anchorage – 75-inches Downstream Impact Point

After successful redirection in section 2.2.6, the researchers decided to further move the impact point downstream by 37.5 inches. Therefore, this simulation was performed with the impact point 75-inches downstream from the impact point used in section 2.2.4. This equates to 60.0-ft from the downstream end of the installation. Figure 2.29 shows an overhead view of the finite element model.


Figure 2.29. Overhead View of 87.5 ft Guardrail System with 75 inches Downstream Impact Point

The system was evaluated using a simulated MASH Test 3-11. The 2270P MASH pickup truck impacted the guardrail system at 62 mi/h with an impact angle of 25°. The impact point was 60.0-ft from the downstream end of the rail and is shown below in Figure 2.30.

Figure 2.30. Overhead View of Impact Point for 87.5 ft Guardrail System with 75 inches Downstream Impact Point

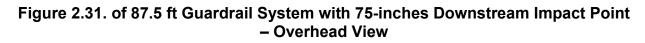

Sequential photos of the computer simulation can be seen in the figures below. During the impact, the w-beam rail was pulled off the downstream end posts and consequently lost its ability to redirect the pickup truck. Therefore, the researchers deemed the impact point 63.3-ft from the downstream end of the rail (see section 2.2.6) to be the furthest downstream impact point which would provide redirective behavior. Any impact point downstream of this location could not be assumed to provide redirective behavior.

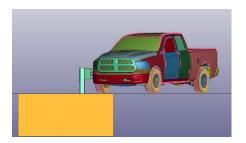
0.02 s

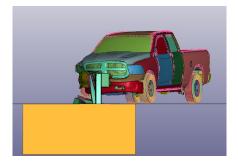

0.135 s


0.075 s

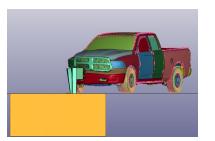
0.175 s

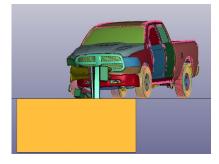

0.48 s

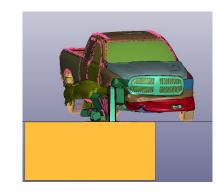


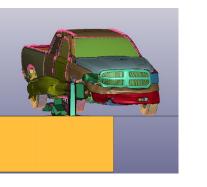

0.520 s

0.580 s

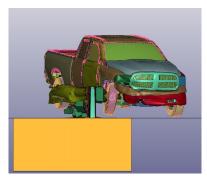



0.02 s


0.135 s


0.075 s

0.175 s



0.48 s

0.30 s

0.520 s

0.580 s

2.3. COMPUTER SIMULATION CONCLUSIONS

Based on the results of the previous computer simulations, the research team proceeded to develop test installation drawings for full-scale crash testing. The selected system incorporated 87.5 ft of w-beam guardrail, as was determined to be the minimum length-of-need by computer simulation. The critical impact point was selected to be the 37.5-inches downstream impact point, as discussed above. The research team determined 12.5 ft of this 87.5 ft minimum length can be accounted for in the length of the guardrail terminal. Therefore, only 75 ft of additional length beyond a MASH compliant terminal is needed. The crash testing of this system is discussed in the following chapter.

CHAPTER 3. SYSTEM DETAILS

3.1. TEST ARTICLE AND INSTALLATION DETAILS

In Crash Test No. 614721-01-2 on April 6, 2021, the installation consisted of a 125 ft-9½ inch long W-beam guardrail system with a length-of-need of 75 ft (with an additional 12.5 ft of length-of-need accounted for in a *MASH* compliant terminal). It was anchored on the upstream end by a SoftStop[®] end terminal. The downstream end of the system was not anchored. Posts 9 through 20 were standard 72-inch long wide flange steel guardrail posts spaced at 75 inches. The height of the w-beam rail top edge was 31 inches above grade. Section A.1 in Appendix A provides further details on the guardrail without downstream anchorage.

For the second Crash Test No. 614721-01-1 on October 26, 2022, the installation was the same as the first test except that a rectangular plate washer was added and attached in front of the guardrail at posts 19 and 20. Section A.2 in Appendix A provides further details on the guardrail without downstream anchorage.

Figure 3.1 presents the overall information on the guardrail without downstream anchorage, and Figure 3.2 provides photographs of the installation. Drawings were provided by the Texas A&M Transportation Institute (TTI) Proving Ground, and construction was performed by approved vendors and supervised by TTI Proving Ground personnel.

3.2. DESIGN MODIFICATIONS DURING TESTS

No modifications were made during testing

3.3. MATERIAL SPECIFICATIONS

Appendix B provides material certification documents for the materials used to install/construct the Guardrail without downstream anchorage.

3.4. SOIL CONDITIONS

The test installation was installed in standard soil meeting grading B of AASHTO standard specification M147-17 "Materials for Aggregate and Soil-Aggregate Subbase, Base and Surface Courses."

In accordance with Appendix B of *MASH*, soil strength was measured the day of the crash test. During installation of the guardrail without downstream anchorage for full-scale crash testing, two 6-ft long W6×16 posts were installed in the immediate vicinity of the Guardrail without downstream anchorage using the same fill materials and installation procedures used in the test installation and the standard dynamic test. Table B.1 in Appendix B presents minimum soil strength properties established through the dynamic testing performed in accordance with *MASH* Appendix B.

As determined by the tests summarized in Appendix B, Table B.1, the minimum post loads are shown in Table 3..

On the day of Test 3-11, April 4, 2021, the measured post loading proved the backfill material in which the Guardrail without downstream anchorage was installed met minimum *MASH* requirements for soil strength.

- · ·								
Displacement (in)	Minimum Load (Ib)	Actual Load (lb)						
5	4420	7777						
10	4981	8939						
15	5282	9595						

Table 3.2. Soil Strength, Test 614721-01-2.

On the day of Test 3-11, October 26, 2022, the measured post loading proved the backfill material in which the Guardrail without downstream anchorage was installed met minimum *MASH* requirements for soil strength.

	• •	
Displacement (in)	Minimum Load (Ib)	Actual Load (lb)
5	4420	7696
10	4981	6969
15	5282	5697

Table 3.1. Soil	Strength,	Test 614721-01-1.
-----------------	-----------	-------------------

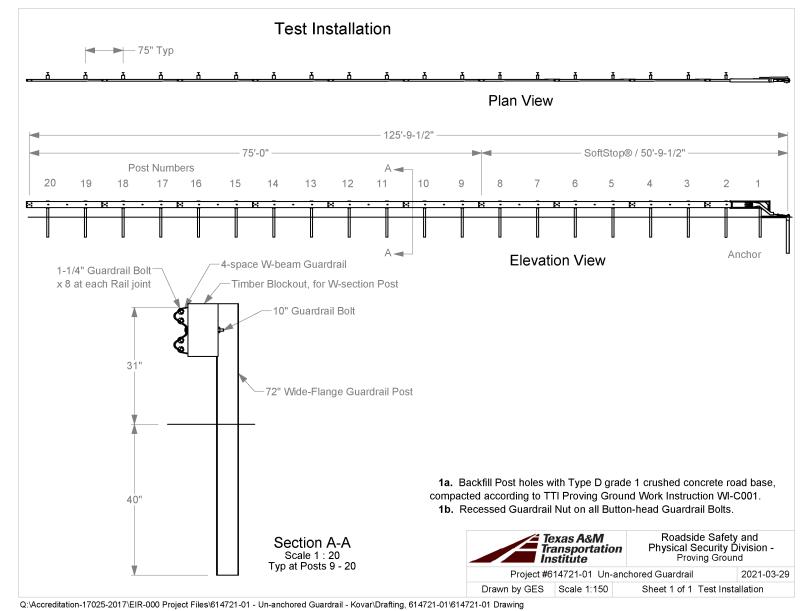


Figure 3.1. Details of Guardrail without downstream anchorage.

Figure 3.2. Guardrail without downstream anchorage prior to Testing.

This page intentionally left blank.

CHAPTER 4. TEST REQUIREMENTS AND EVALUATION CRITERIA

4.1. CRASH TEST PERFORMED/MATRIX

Table 4.1. shows the test conditions and evaluation criteria for *MASH* TL-3 for longitudinal barriers. The target critical impact points (CIPs) for each test were determined through computer simulation. Figure 4.1 shows the target CIP for *MASH* Test 3-11 on the guardrail without downstream anchorage.

Table 4.1. Test Conditions and Evaluation Criteria Specified for MASH TL-3 Longitudinal Barriers.

Test Article		cle Test					Test Vehicle			Impact Conditions				Evaluation Criteria					
			Designation			venicie		Speed		Angle		Criteria							
L	Longitudinal Barrier				3-1 <i>°</i>	1		2270P			62 mi/h		25°		A, D, F, H, I				
20	19	18	17	16	15	14	13	12	11 10 9		8	7	6	5	4	3	2	1	
. <u>à</u>	ð.	. ð	Å	. å	ð	. ă	ă.	. ð	ă	<u>.</u>	Å	ă.	ň	<u>.</u>	ă.	ð	ň		
42"																			

Figure 4.1. Target CIP for *MASH* Test 3-11 (Crash Test Nos. 614721-01-1 & 2) on Guardrail without downstream anchorage.

The crash tests and data analysis procedures were in accordance with guidelines presented in *MASH*. Chapter 4 presents brief descriptions of these procedures.

4.2. EVALUATION CRITERIA

The appropriate safety evaluation criteria from Tables 2-2 and 5-1 of *MASH* were used to evaluate the crash tests reported herein. Table 4.1. lists the test conditions and evaluation criteria required for *MASH* TL-3, and Table 4.2 provides detailed information on the evaluation criteria. An evaluation of the crash test results is presented in Chapter 7.

Evaluation Factors	Evaluation Criteria	MASH Test
Structural Adequacy	A. Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable.	3-10 and 3-11
Occupant Risk	D. Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present undue hazard to other traffic, pedestrians, or personnel in a work zone.	3-10 and 3-11
	Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.2.2 and Appendix E of MASH.	
	<i>F.</i> The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.	3-10 and 3-11
	H. Occupant impact velocities (OIV) should satisfy the following limits: Preferred value of 30 ft/s, or maximum allowable value of 40 ft/s.	3-10 and 3-11
	I. The occupant ridedown accelerations should satisfy the following: Preferred value of 15.0 g, or maximum allowable value of 20.49 g.	3-10 and 3-11

 Table 4.2. Evaluation Criteria Required for MASH TL-3 Longitudinal Barriers.

CHAPTER 5. TEST CONDITIONS

5.1. TEST FACILITY

The full-scale crash tests reported herein were performed at the TTI Proving Ground, an International Standards Organization (ISO)/International Electrotechnical Commission (IEC) 17025-accredited laboratory with American Association for Laboratory Accreditation (A2LA) Mechanical Testing Certificate 2821.01. The full-scale crash tests were performed according to TTI Proving Ground quality procedures, as well as *MASH* guidelines and standards.

The test facilities of the TTI Proving Ground are located on The Texas A&M University System RELLIS Campus, which consists of a 2000-acre complex of research and training facilities situated 10 mi northwest of the flagship campus of Texas A&M University. The site, formerly a United States Army Air Corps base, has large expanses of concrete runways and parking aprons well suited for experimental research and testing in the areas of vehicle performance and handling, vehicle-roadway interaction, highway pavement durability and efficacy, and roadside safety hardware and perimeter protective device evaluation. The site selected for construction and testing of the Guardrail without downstream anchorage was along the edge of an out-of-service apron. The apron consists of an unreinforced jointed-concrete pavement in 12.5-ft × 15-ft blocks nominally 6 inches deep. The aprons were built in 1942, and the joints have some displacement but are otherwise flat and level.

5.2. VEHICLE TOW AND GUIDANCE SYSTEM

The vehicle was towed into the test installation using a steel cable guidance and reverse tow system. A steel cable for guiding the test vehicle was tensioned along the path, anchored at each end, and threaded through an attachment to the front wheel of the test vehicle. An additional steel cable was connected to the test vehicle, passed around a pulley near the impact point and through a pulley on the tow vehicle, and then anchored to the ground such that the tow vehicle moved away from the test site. A 2:1 speed ratio between the test and tow vehicle existed with this system. Just prior to impact with the installation, the test vehicle was released and ran unrestrained. The vehicle remained freewheeling (i.e., no steering or braking inputs) until it cleared the immediate area of the test site.

5.3. DATA ACQUISITION SYSTEMS

5.3.1. Vehicle Instrumentation and Data Processing

Each test vehicle was instrumented with a self-contained onboard data acquisition system. The signal conditioning and acquisition system is a multi-channel data acquisition system (DAS) produced by Diversified Technical Systems Inc. The accelerometers, which measure the x, y, and z axis of vehicle acceleration, are strain gauge type with linear millivolt output proportional to acceleration. Angular rate sensors,

measuring vehicle roll, pitch, and yaw rates, are ultra-small, solid-state units designed for crash test service. The data acquisition hardware and software conform to the latest SAE J211, Instrumentation for Impact Test. Each of the channels is capable of providing precision amplification, scaling, and filtering based on transducer specifications and calibrations. During the test, data are recorded from each channel at a rate of 10,000 samples per second with a resolution of one part in 65,536. Once data are recorded, internal batteries back these up inside the unit in case the primary battery cable is severed. Initial contact of the pressure switch on the vehicle bumper provides a time zero mark and initiates the recording process. After each test, the data are downloaded from the DAS unit into a laptop computer at the test site. The Test Risk Assessment Program (TRAP) software then processes the raw data to produce detailed reports of the test results.

Each DAS is returned to the factory annually for complete recalibration and to ensure that all instrumentation used in the vehicle conforms to the specifications outlined by SAE J211. All accelerometers are calibrated annually by means of an ENDEVCO^o 2901 precision primary vibration standard. This standard and its support instruments are checked annually and receive a National Institute of Standards Technology (NIST) traceable calibration. The rate transducers used in the data acquisition system receive calibration via a Genisco Rate-of-Turn table. The subsystems of each data channel are also evaluated annually, using instruments with current NIST traceability, and the results are factored into the accuracy of the total data channel per SAE J211. Calibrations and evaluations are also made anytime data are suspect. Acceleration data are measured with an expanded uncertainty of ± 1.7 percent at a confidence factor of 95 percent (k = 2).

TRAP uses the DAS-captured data to compute the occupant/compartment impact velocities, time of occupant/compartment impact after vehicle impact, and highest 10-millisecond (ms) average ridedown acceleration. TRAP calculates change in vehicle velocity at the end of a given impulse period. In addition, maximum average accelerations over 50-ms intervals in each of the three directions are computed. For reporting purposes, the data from the vehicle-mounted accelerometers are filtered with an SAE Class 180-Hz low-pass digital filter, and acceleration versus time curves for the longitudinal, lateral, and vertical directions are plotted using TRAP.

TRAP uses the data from the yaw, pitch, and roll rate transducers to compute angular displacement in degrees at 0.0001-s intervals, and then plots yaw, pitch, and roll versus time. These displacements are in reference to the vehicle-fixed coordinate system with the initial position and orientation being initial impact. Rate of rotation data is measured with an expanded uncertainty of ± 0.7 percent at a confidence factor of 95 percent (k = 2).

5.3.2. Anthropomorphic Dummy Instrumentation

According to *MASH*, use of a dummy in the 2270P vehicle is optional, and no dummy was used in the test.

5.3.3. Photographic Instrumentation Data Processing

Photographic coverage of each test included three digital high-speed cameras:

- One overhead with a field of view perpendicular to the ground and directly over the impact point.
- One placed upstream from the installation at an angle to have a field of view of the interaction of the rear of the vehicle with the installation.
- A third placed with a field of view parallel to and aligned with the installation at the downstream end.

A flashbulb on the impacting vehicle was activated by a pressure-sensitive tape switch to indicate the instant of contact with the test installation. The flashbulb was visible from each camera. The video files from these digital high-speed cameras were analyzed to observe phenomena occurring during the collision and to obtain time-event, displacement, and angular data. A digital camera recorded and documented conditions of each test vehicle and the installation before and after the test.

CHAPTER 6. *MASH* TEST 3-11 (CRASH TEST NO. 614721-01-2)

6.1. TEST DESIGNATION AND ACTUAL IMPACT CONDITIONS

MASH Test 3-11 involves a 2270P vehicle weighing 5000 lb ± 110 lb impacting the CIP of the longitudinal barrier at an impact speed of 62 mi/h ± 2.5 mi/h and an angle of 25 degrees ± 1.5 degrees. The CIP for *MASH* Test 3-11 on the guardrail without downstream anchorage was 42 inches ± 12 inches upstream of the centerline of post 11. Figure 4.1 and Figure 6.1 depict the target impact setup.

Figure 6.1. Guardrail without downstream anchorage/Test Vehicle Geometrics for Test No. 614721-01-2.

The 2270P vehicle weighed 5035 lb, and the actual impact speed and angle were 62.8 mi/h and 25.4 degrees. The actual impact point was 46.3 inches upstream of the centerline of post 11. Minimum target IS was 106 kip-ft, and actual IS was 122.1 kip-ft.

6.2. WEATHER CONDITIONS

The test was performed on the morning of April 6, 2021. Weather conditions at the time of testing were as follows: wind speed: 11 mi/h; wind direction: 163 degrees (vehicle was traveling at a heading of 195 degrees); temperature: 72°F; relative humidity: 88 percent.

6.3. TEST VEHICLE

Figure 6.2 shows the 2017 RAM 1500 pickup truck used for the crash test. The vehicle's test inertia weight was 5035 lb, and its gross static weight was 5035 lb. The height to the lower edge of the vehicle bumper was 11.75 inches, and height to the upper edge of the bumper was 27.0 inches. The height to the vehicle's center of gravity was 28.25 inches. Tables C.1 and C.2 in Appendix C.1 give additional dimensions and information on the vehicle. The vehicle was directed into the installation using a cable

reverse tow and guidance system and was released to be freewheeling and unrestrained just prior to impact.

Figure 6.2. Test Vehicle before Test No. 614721-01-2.

6.4. TEST DESCRIPTION

Table 6.1 lists events that occurred during Test No. 614721-01-2. Figures C.1 and C.2 in Appendix C.2 present sequential photographs during the test.

Time (s)	Events
0.0000	Vehicle impacted the guardrail
0.0188	Post 11 began to deflect towards the field side
0.0510	Vehicle began to redirect
0.0980	Rail element released from the downstream blockouts

 Table 6.1. Events during Test No. 614721-01-2.

For longitudinal barriers, it is desirable for the vehicle to redirect and exit the barrier within the exit box criteria (not less than 32.8 ft downstream from loss of contact for cars and pickups). The test vehicle did not exit within the exit box criteria defined in *MASH*. Brakes on the vehicle were not applied after impact. The vehicle subsequently came to rest 35 ft downstream of the point of impact and 19 ft toward the field side.

6.5. DAMAGE TO TEST INSTALLATION

Figure 6.3 shows the damage to the guardrail without downstream anchorage. The rail deformed and was partially torn in several places. The rail element released from the posts and blockouts from post 12 until the end of the installation. The blockout released from the rail element and post at posts 12, 13, and 15. The soil was disturbed at post 1, and 4 through 8. Please see Table 6.2 for measurements of post behavior.

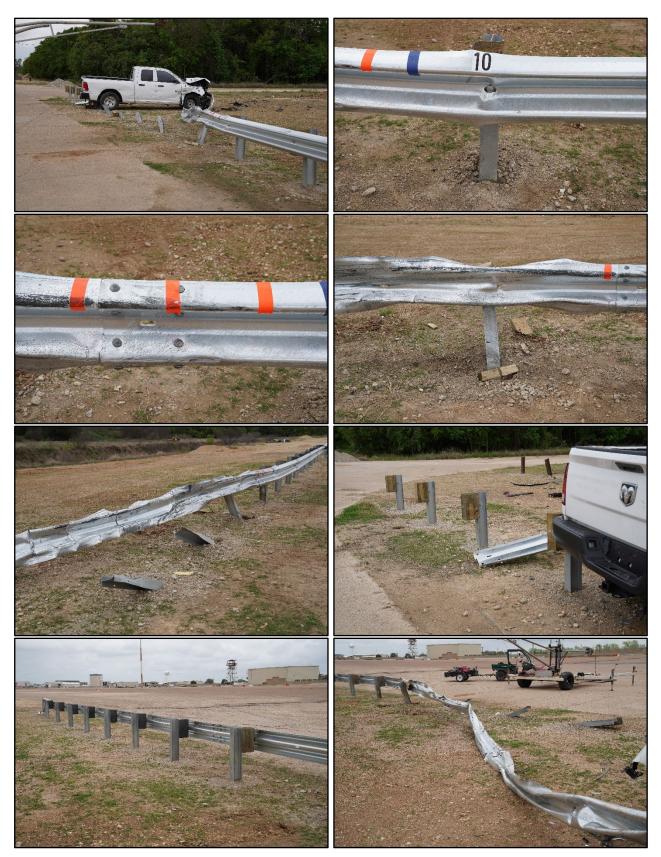


Figure 6.3. Guardrail without downstream anchorage after Test No. 614721-01-2.

Post #	Post Lean	Soil Gap
Anchor	1½ inches u/s	-
2	-	1° f/s
9	1/4-inch t/s	-
10	1¼ inches t/s; ½-inch f/s	2° f/s
11	7 inches t/s; ¼-inch f/s	20° f/s
12	-	64° d/s
13	-	68° d/s
14	-	77° d/s
15	-	66° d/s
16	-	64° d/s
17	1/4-inch t/s; 1/4-inch f/s	1° d/s

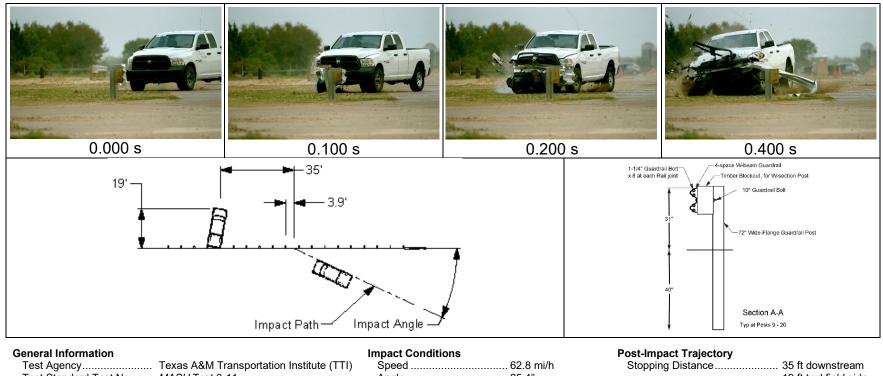
 Table 6.2. Post Movement/Lean after Test No. 614721-01-2.

t/s=traffic side; f/s=field side; u/s=upstream; d/s=downstream

6.6. DAMAGE TO TEST VEHICLE

Figure 6.4 shows the damage sustained by the vehicle. The front bumper, hood, grill, radiator and support, right and left front fenders, right front tire and rim, right front and rear doors, right rear exterior bed, left rear door, left rear cab corner, and left rear exterior bed were damaged. No fuel tank damage was observed. Maximum exterior crush to the vehicle was 11.0 inches in the front plane at the right front corner at bumper height. No occupant compartment deformation or intrusion was observed. Figure 6.5 shows the interior of the vehicle. Tables C.3 and C.4 in Appendix C.1 provide exterior crush and occupant compartment measurements.

Figure 6.4. Test Vehicle after Test No. 614721-01-2.


Figure 6.5. Interior of Test Vehicle after Test No. 614721-01-2.

6.7. OCCUPANT RISK FACTORS

Data from the accelerometers were digitized for evaluation of occupant risk, and the results are shown in Table 6.3. Figure C.3 in Appendix C.3 shows the vehicle angular displacements, and Figures C.4 through C.6 in Appendix C.4 show acceleration versus time traces. Figure 6.6 summarizes pertinent information from the test.

· · · · · · · · · · · · · · · ·		
Occupant Risk Factor	Value	Time
Occupant Impact Velocity (OIV)		
Longitudinal	16.4 ft/s	at 0.1707 s on right side of
Lateral	9.4 ft/s	interior
Occupant Ridedown Accelerations		
Longitudinal	8.4 g	0.4806 - 0.4906 s
Lateral	4.3 g	0.4192 - 0.4292 s
Theoretical Head Impact Velocity		at 0.1619 s on right side of
(THIV)	5.4 m/s	interior
Acceleration Severity Index (ASI)	0.6	0.0747 - 0.1247 s
Maximum 50-ms Moving Average		
Longitudinal	-6.1 g	0.5209 - 0.5709 s
Lateral	-4.6 g	0.0478 - 0.0978 s
Vertical	-2.9 g	0.1634 - 0.2134 s
Maximum Yaw, Pitch, and Roll Angles		
Roll	12°	1.0313 s
Pitch	9°	1.9637 s
Yaw	76°	1.3715 s

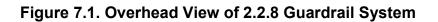
Table 6.3. Occupant Risk Factors for Test No. 614721-01-2.

Test Standard Test No MASJ TTI Test No	as A&M Transportation Institute (TTI) 6H Test 3-11 721-01-2 I-04-06 gitudinal Barrier—Guardrail rdrail without downstream anchorage	Impact Severity Exit Conditions Speed	25.4° 46.3 inches upstream of post 11 122.1 kip-ft Not Measurable	Vehicle Stability Maximum Roll Angle Maximum Pitch Angle Maximum Yaw Angle Vehicle Snagging	19 ft twd field side 12° 9° 76° No
steel ancho Soil Type and Condition Crush	eam rail element mounted at iches on 72-inch long wide flange I guardrail posts without downstream iorage	Trajectory/Heading Angle Occupant Risk Values Longitudinal OIV Lateral OIV Longitudinal Ridedown Lateral Ridedown	16.4 ft/s 9.4 ft/s 8.4 g 4.3 g	Vehicle Pocketing Test Article Deflections Dynamic Permanent Working Width Height of Working Width	Not Measurable Not Measurable Not Measurable
Test VehicleType/Designation2270Make and Model2017Curb5117Test Inertial5035DummyNo duGross Static5035	7 RAM 1500 Pickup 7 lb 5 lb lummy	THIV ASI Max. 0.050-s Average Longitudinal Lateral Vertical	0.6 -6.1 g -4.6 g	Vehicle Damage VDS CDC Max. Exterior Deformation Max. Occupant Compartment Deformation	01FREW3 11.0 inches

Figure 6.6. Summary of Results for *MASH* Test 3-11 on Guardrail without downstream anchorage.

CHAPTER 7. COMPUTER SIMULATION EFFORT TO IMPROVE REDIRECTIVE CAPABILITY

7.1. INTRODUCTION


After the failed *MASH* test 3-11, the research team compared the predictive simulations discussed in Chapter 2 and the results of the physical crash test. The computer simulations failed to adequately represent the tensile resistance the w-beam guardrail slots provide for the guardrail bolt head. The physical crash test showed the w-beam guardrail slots allowed the bolts to pull through the rail sooner than what the simulation was predicting. Therefore, the research team initiated an effort to improve the predictive capability of the simulations, specifically the interaction between the w-beam guardrail slots and the guardrail bolt heads. Once the improvements were added to the FEA model, the researchers investigated methods to maintain connectivity between the w-beam guardrail and the downstream end posts.

7.2. SIMULATION MODEL IMPROVEMENTS

Following the failed crash test, the research team modified the finite element model to improve its predictive capability. This primarily focused on the ability of the computer simulations to predict the interaction between the guardrail bolts and the wbeam guardrail slots. To improve the predictive capability of this interaction, the research team refined the mesh size and the thickness of the elements around the slot.

7.2.1. 87.5-ft Guardrail System with 2.3 mm Slot Elements

To improve the accuracy of the simulated interaction between the bolts and wbeam rail, the researchers reduced the w-beam rail's mesh size around the slot location. Furthermore, the researchers reduced the thickness of the elements around the slot to 2.3 mm from the original 2.6 mm. Figure 7.1 shows an overhead view of the finite element model.

· · · · · · · · · · · ·

The system was evaluated using a simulated *MASH* Test 3-11. The 2270P *MASH* pickup truck impacted the guardrail system at 62 mi/h with an impact angle of 25°. The impact point was 63.3-ft from the unanchored downstream end of the rail and is shown below in Figure 7.2.



Figure 7.2. Overhead View of Impact Point for 2.2.8 Guardrail System

Figure 7.3, Figure 7.4, Figure 7.5, and Figure 7.6 show the sequential frames of *MASH* Test 3-11 on the 87.5-ft system with refined slot mesh. During the impact, the w-beam rail was pulled from the downstream end posts and consequently lost its ability to redirect the pickup truck. The simulation could have improved in similarity to the physical crash test, and therefore, the researchers further refined the model as discussed in the following section.

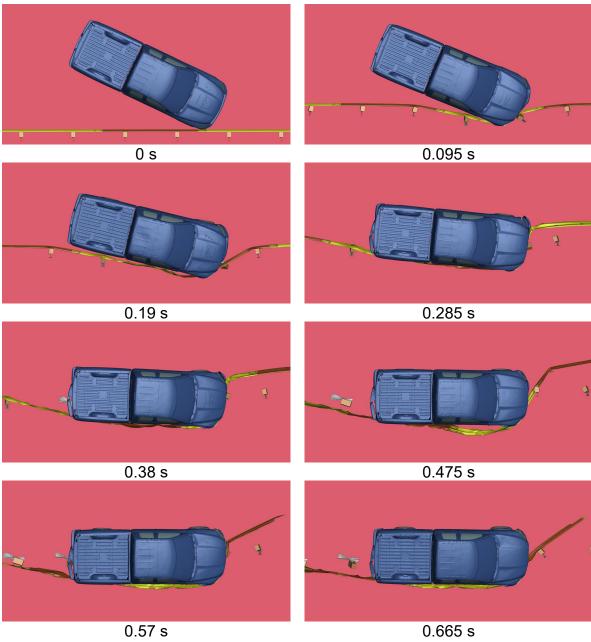
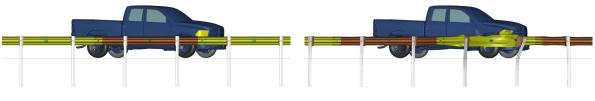
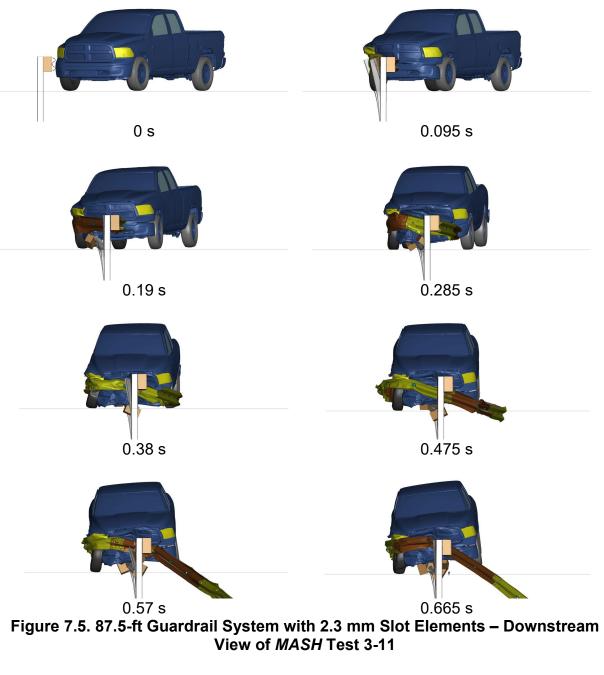



Figure 7.3. 87.5-ft Guardrail System with 2.3 mm Slot Elements – Overhead View of MASH Test 3-11

0.095 s

0.19 s

0.285 s



0.38 s

0.475 s

0.57 s 0.665 s Figure 7.4. 87.5-ft Guardrail System with 2.3 mm Slot Elements – Rear View of MASH Test 3-11

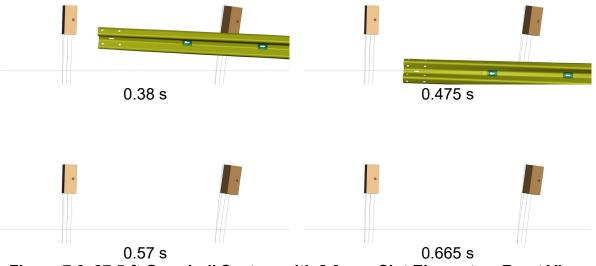
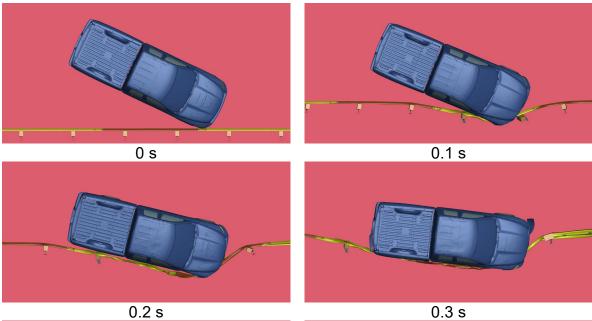


Figure 7.6. 87.5-ft Guardrail System with 2.3 mm Slot Elements – Front View of Downstream End Posts During *MASH* Test 3-11

7.2.2. 87.5-ft Guardrail System with 2.4 mm Slot Elements

The thickness of the refined mesh slot elements was increased from 2.3 mm, simulated in 2.2.8, to 2.4 mm. Figure 7.7 shows an overhead view of the finite element model.


Figure 7.7. Overhead View of 87.5-ft Long Guardrail System

The system was evaluated using a simulated *MASH* Test 3-11. The 2270P *MASH* pickup truck impacted the guardrail system at 62 mi/h with an impact angle of 25°. The impact point was 63.3-ft from the unanchored downstream end of the rail and is shown below in Figure 7.8.

Figure 7.8. Overhead View of Impact Point for 87.5-ft Long Guardrail System

Figure 7.9, Figure 7.10, Figure 7.11, and Figure 7.12 show the sequential frames of *MASH* Test 3-11 on the 87.5-ft system with 2.4 mm thick refined slot elements. During the impact, the w-beam rail was pulled off the posts downstream of impact and consequently lost its ability to redirect the pickup truck. The simulation needed improvement in similarity to the physical crash test, and therefore, the researchers further refined the model as discussed in the following section. The truck did exhibit node entanglement simulation issues with the w-beam rail, but these occurred after the w-beam rail was pulled off the downstream posts.

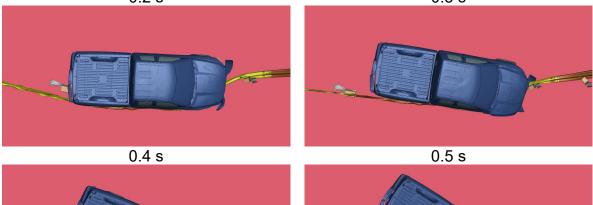


Figure 7.9. 87.5-ft Guardrail System with 2.4 mm Slot Elements – Overhead View of *MASH* Test 3-11

0.2 s

0.3 s

0.5 s

0.6 s 0.7 s Figure 7.10. 87.5-ft Guardrail System with 2.4 mm Slot Elements – Rear View of *MASH* Test 3-11

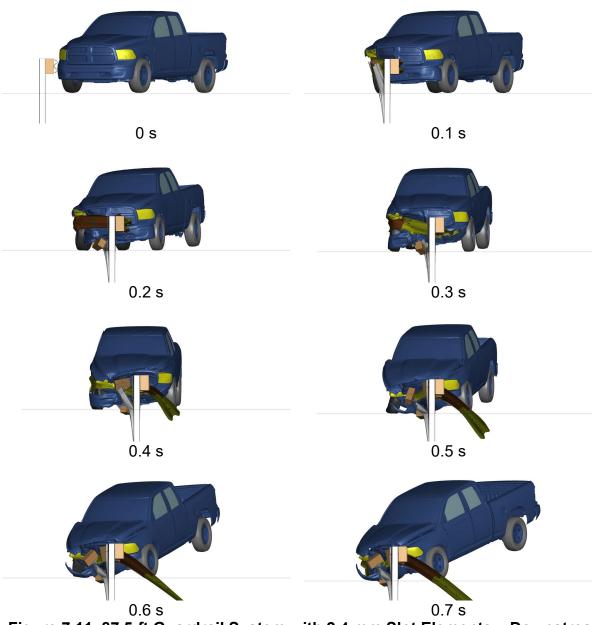


Figure 7.11. 87.5-ft Guardrail System with 2.4 mm Slot Elements – Downstream View of *MASH* Test 3-11

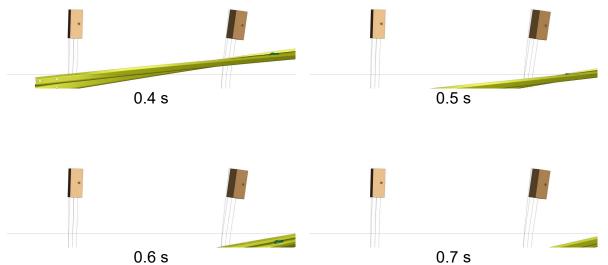


Figure 7.12. 87.5-ft Guardrail System with 2.4 mm Slot Elements – Front View of Downstream Posts During *MASH* Test 3-11

7.2.3. 87.5-ft Guardrail System with 2.5 mm Slot Elements

Ļ

The thickness of the refined mesh slot was increased from 2.4 mm, simulated in 2.2.9, to 2.5 mm. Figure 7.13 shows an overhead view of the finite element model.

Figure 7.13. Overhead View of 87.5-ft Long Guardrail System

ų ų

4

ų

ų.

ų ··

The system was evaluated using a simulated *MASH* Test 3-11. The 2270P *MASH* pickup truck impacted the guardrail system at 62 mi/h with an impact angle of 25°. The impact point was 63.3-ft from the unanchored downstream end of the rail and is shown below in Figure 7.14.

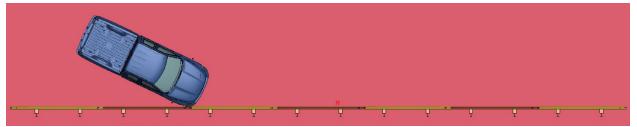
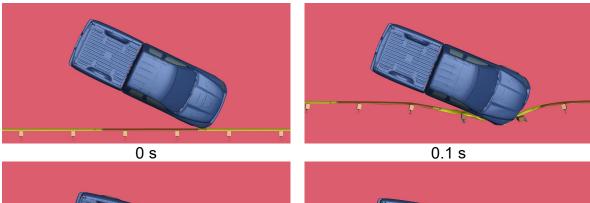
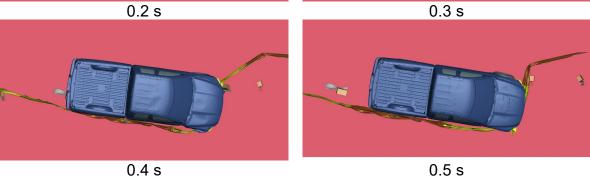
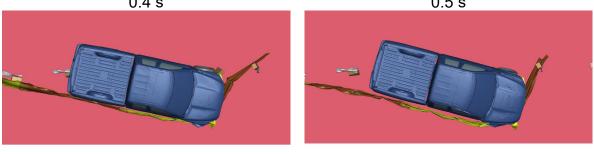
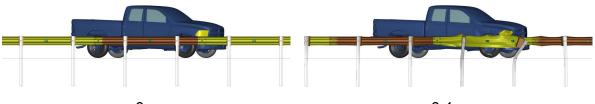



Figure 7.14. Overhead View of Impact Point for 87.5-ft Long Guardrail System


Figure 7.15, Figure 7.16, Figure 7.17, and Figure 7.18 show the sequential frames of *MASH* Test 3-11 on the 87.5-ft system with 2.5 mm thick refined slot elements. During the impact, the w-beam rail was pulled off the posts downstream of impact and consequently lost its ability to redirect the pickup truck. The simulation could have improved in similarity to the physical crash test, and therefore, the researchers further refined the model as discussed in the following section.





0.6 s 0.7 s Figure 7.15. 87.5-ft Guardrail System with 2.5 mm Slot Elements – Overhead View of MASH Test 3-11

0.2 s

0.3 s

0.5 s

0.6 s 0.7 s Figure 7.16. 87.5-ft Guardrail System with 2.5 mm Slot Elements – Rear View of *MASH* Test 3-11

0.6 s Figure 7.17. 87.5-ft Guardrail System with 2.5 mm Slot Elements – Downstream View of MASH Test 3-11

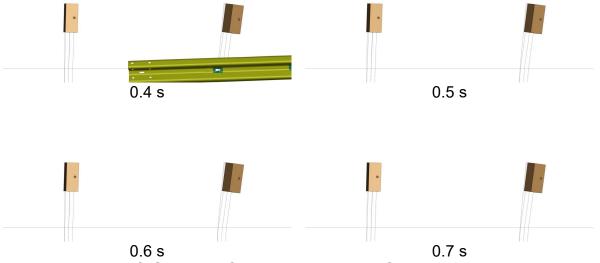


Figure 7.18. 87.5-ft Guardrail System with 2.5 mm Slot Elements – Front View of Downstream Posts During *MASH* Test 3-11

7.2.4. 87.5-ft Guardrail System with 2.6 mm Slot Elements

To reflect the results of physical crash testing more accurately, the thickness of the refined mesh slot was increased from 2.5 mm, simulated in 2.2.10, to 2.6 mm. Figure 7.19 shows an overhead view of the finite element model.

Figure 7.19. Overhead View of 87.5-ft Long Guardrail System

The system was evaluated using a simulated *MASH* Test 3-11. The 2270P *MASH* pickup truck impacted the guardrail system at 62 mi/h with an impact angle of 25°. The impact point was 63.3-ft from the unanchored downstream end of the rail and is shown below in Figure 7.20.

Figure 7.20. Overhead View of Impact Point for 87.5-ft Long Guardrail System

Figure 7.21, Figure 7.22, Figure 7.23, and Figure 7.24 show the sequential frames of *MASH* Test 3-11 on the 87.5-ft system with 2.6 mm thick refined slot elements. During the impact, the w-beam rail was pulled off the posts downstream of impact and consequently lost its ability to redirect the pickup truck. The simulation could have improved in similarity to the physical crash test, and therefore, the researchers further refined the model as discussed in the following section.

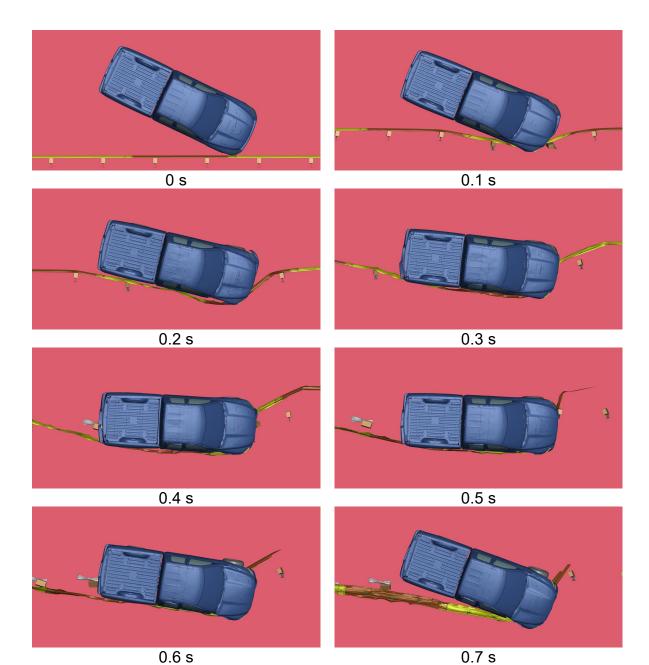


Figure 7.21. 87.5-ft Guardrail System with 2.6 mm Slot Elements – Overhead View of MASH Test 3-11

0.2 s

0.3 s

0.6 s 0.7 s Figure 7.22. 87.5-ft Guardrail System with 2.6 mm Slot Elements – Rear View of *MASH* Test 3-11

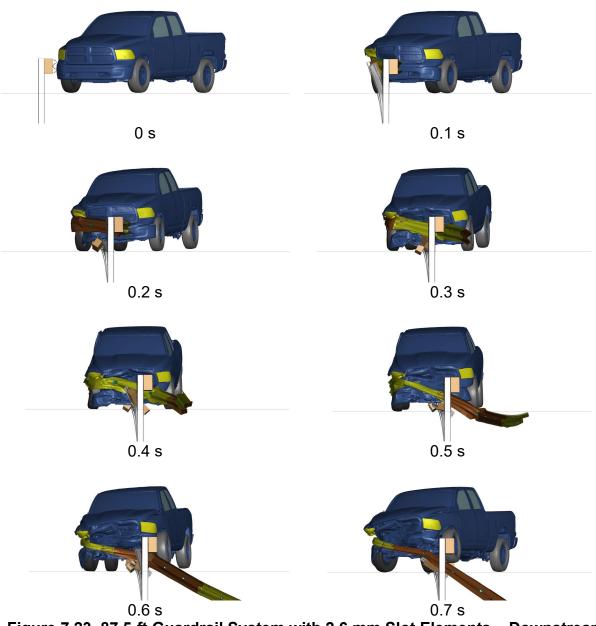


Figure 7.23. 87.5-ft Guardrail System with 2.6 mm Slot Elements – Downstream View of *MASH* Test 3-11

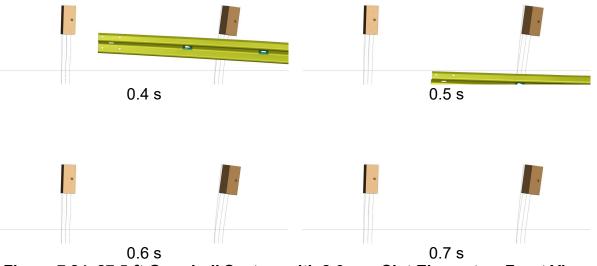


Figure 7.24. 87.5-ft Guardrail System with 2.6 mm Slot Elements – Front View of Downstream Posts During *MASH* Test 3-11

7.2.5. 87.5-ft Guardrail System with 1 mm Slot Elements

Ļ

Ų

The thickness of the refined mesh slot was decreased from 2.6 mm, simulated in 2.2.11, to 1 mm. Figure 7.25 shows an overhead view of the finite element model.

Figure 7.25. Overhead View of 87.5-ft Long Guardrail System

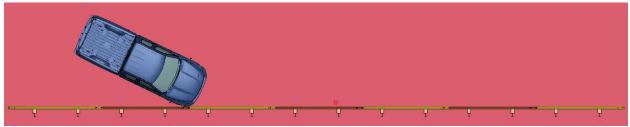
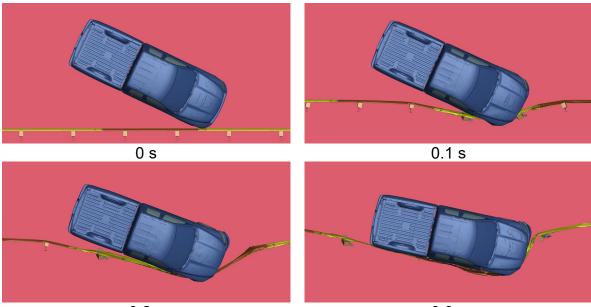
P

ų

ų

ų.

The system was evaluated using a simulated *MASH* Test 3-11. The 2270P *MASH* pickup truck impacted the guardrail system at 62 mi/h with an impact angle of 25°. The impact point was 63.3-ft from the unanchored downstream end of the rail and is shown below in Figure 7.26.

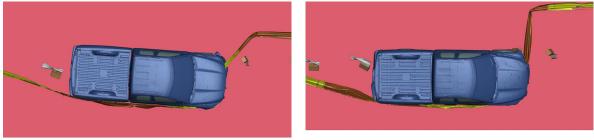
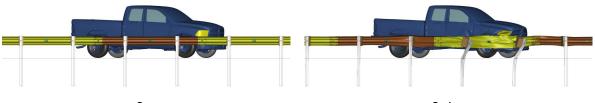

Figure 7.26. Overhead View of Impact Point for 87.5-ft Long Guardrail System

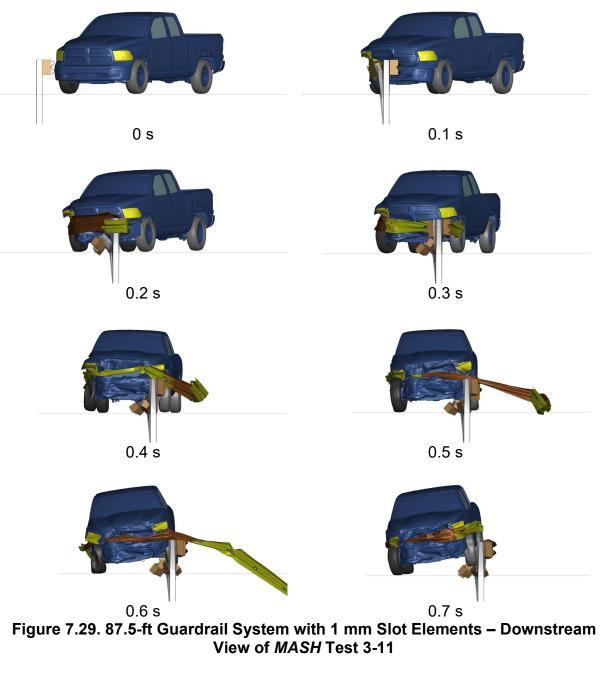
Figure 7.27, Figure 7.28, Figure 7.29, and Figure 7.30 show the sequential frames of *MASH* Test 3-11 on the 87.5-ft system with 2.6 mm thick refined slot elements. During the impact, the w-beam rail was pulled off the posts downstream of impact and consequently lost its ability to redirect the pickup truck. This simulation most closely matched the previous physical crash test. Therefore, a refined mesh slot element thickness of 1 mm was utilized in future simulations.



0.6 s 0.7 s Figure 7.27. 87.5-ft Guardrail System with 1 mm Slot Elements – Overhead View of MASH Test 3-11

0.2 s

0.3 s



0.6 s 0.7 s Figure 7.28. 87.5-ft Guardrail System with 1 mm Slot Elements – Rear View of *MASH* Test 3-11

0.6 s 6.6 s 6.7 s 6.

7.3. DETERMINATION OF REQUIRED ADDITIONAL LENGTH

After the model with refined mesh was shown to adequately predict the outcome of the previous physical crash test, the researchers evaluated what additional measures were needed to maintain connectivity between the w-beam guardrail and the downstream end posts. First, the researchers evaluated the required additional length to maintain connectivity, compared to the physical crash test installation. Next, the researchers evaluated the effectiveness of guardrail washers for maintaining the connectivity.

7.3.1. 112.5-ft Guardrail System with Refined Slot Mesh

This model and the following models have the refined mesh, as discussed earlier, incorporated to the w-beam guardrail slot locations. The length of the guardrail system was increased by adding 25-ft to the downstream side for a total length of 112.5-ft. Figure 7.31 shows an overhead view of the finite element model. The system was evaluated using a simulated *MASH* Test 3-11. The 2270P *MASH* pickup truck impacted the guardrail system at 62 mi/h with an impact angle of 25°. The impact point was 88.3-ft from the unanchored downstream end of the rail and is shown below in Figure 7.32.

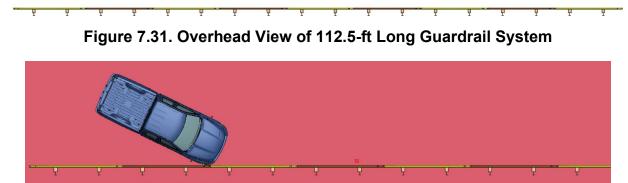
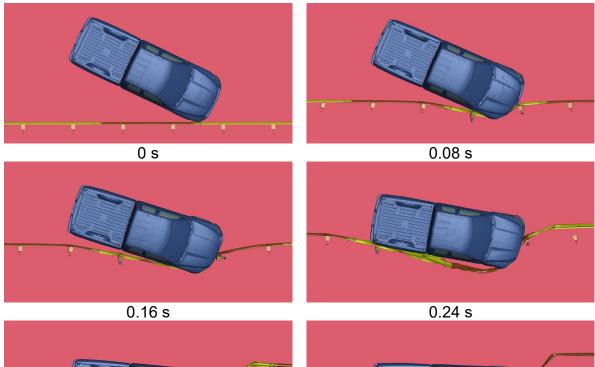
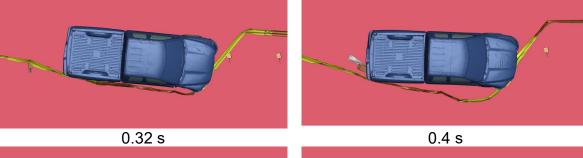
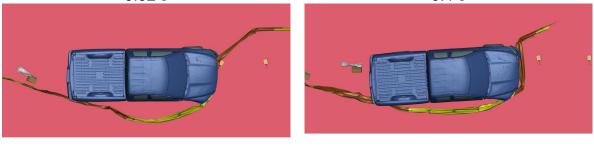
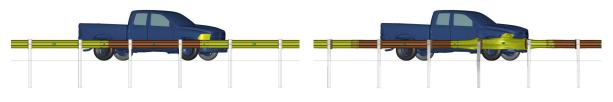





Figure 7.32. Overhead View of Impact Point for 112.5-ft Long Guardrail System


Figure 7.33, Figure 7.34, Figure 7.35, and Figure 7.36 show the sequential frames of *MASH* Test 3-11 on the 112.5-ft system with 1 mm thick refined slot elements. During the impact, the w-beam rail was pulled off the posts downstream of impact and consequently lost its ability to redirect the pickup truck. The researchers then increased the length of the guardrail system, and this model is discussed in the next section.

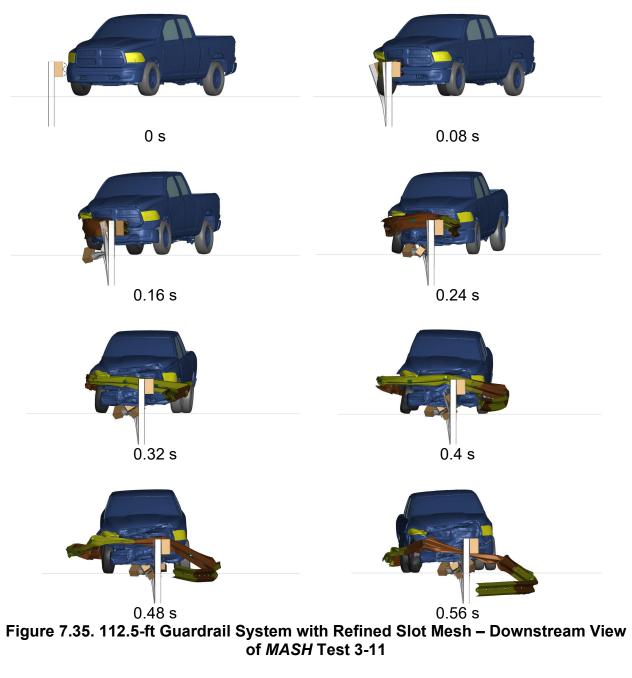
0.48 s 0.56 s Figure 7.33. 112.5-ft Guardrail System with Refined Slot Mesh – Overhead View of MASH Test 3-11

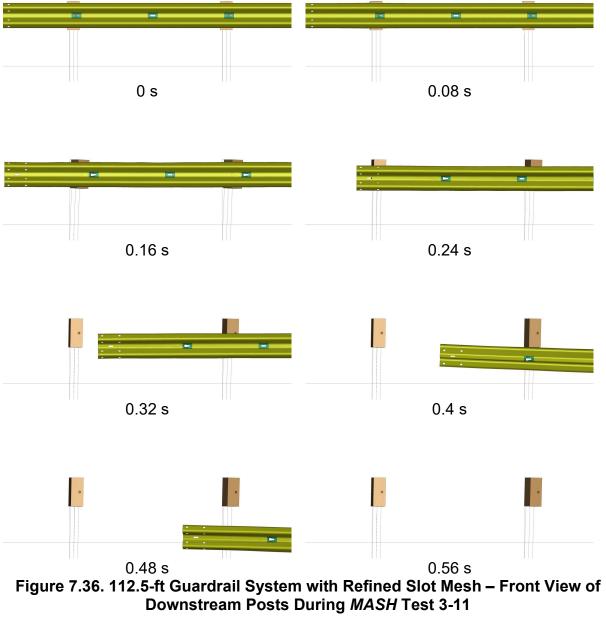
0 s

0.08 s

0.16 s

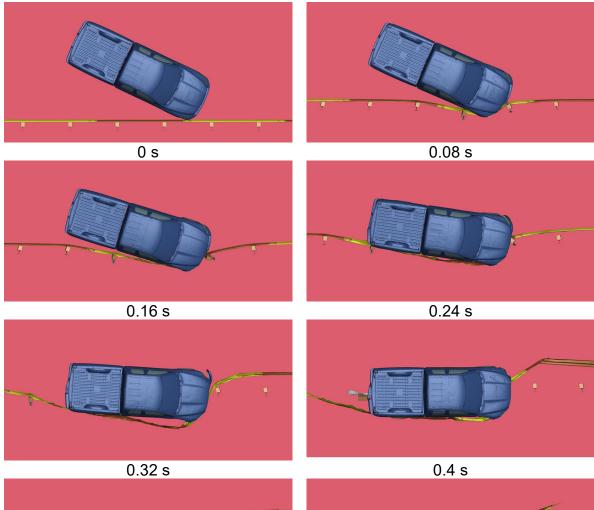
0.24 s

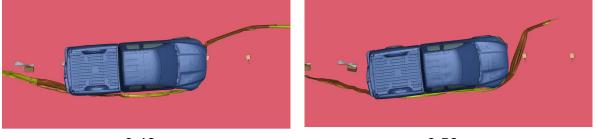



0.32 s

0.48 s 0.56 s Figure 7.34. 112.5-ft Guardrail System with Refined Slot Mesh – Rear View of *MASH* Test 3-11

7.3.2. 137.5-ft Guardrail System with Refined Slot Mesh


The length of the guardrail system was increased by adding 25-ft to the downstream side for a total length of 137.5-ft. Figure 7.37 shows an overhead view of the finite element model. The system was evaluated using a simulated *MASH* Test 3-11. The 2270P *MASH* pickup truck impacted the guardrail system at 62 mi/h with an impact angle of 25°. The impact point was 113.3-ft from the unanchored downstream end of the rail and is shown below in Figure 7.38.


Figure 7.37. Overhead View of 137.5-ft Long Guardrail System

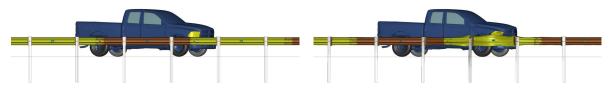

Figure 7.38. Overhead View of Impact Point for 137.5-ft Long Guardrail System

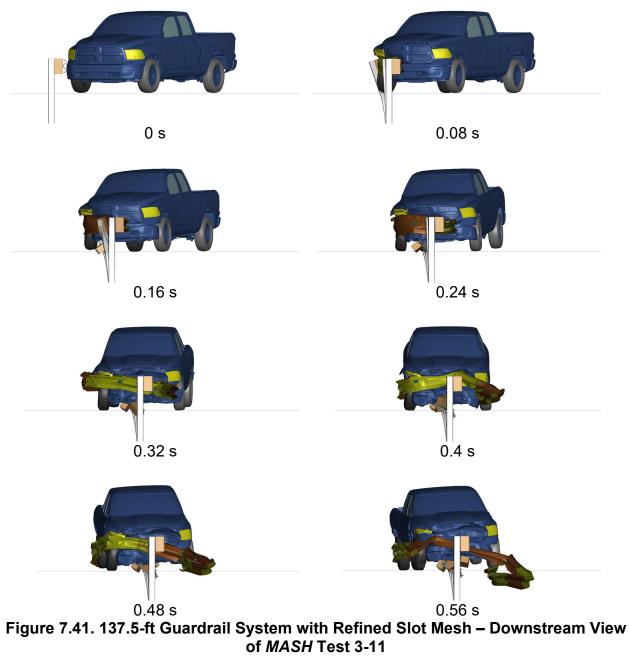
Figure 7.39, Figure 7.40, Figure 7.41., and Figure 7.42 show the sequential frames of *MASH* Test 3-11 on the 137.5-ft system with 1 mm thick refined slot element. During the impact, the w-beam rail was pulled off the posts downstream of impact and consequently lost its ability to redirect the pickup truck. The researchers then increased the length of the guardrail system, and this model is discussed in the next section.

0.48 s 0.56 s Figure 7.39. 137.5-ft Guardrail System with Refined Slot Mesh – Overhead View of MASH Test 3-11

0.08 s

0.16 s

0.24 s



0.32 s

0.48 s 0.56 s Figure 7.40. 137.5-ft Guardrail System with Refined Slot Mesh – Rear View of *MASH* Test 3-11

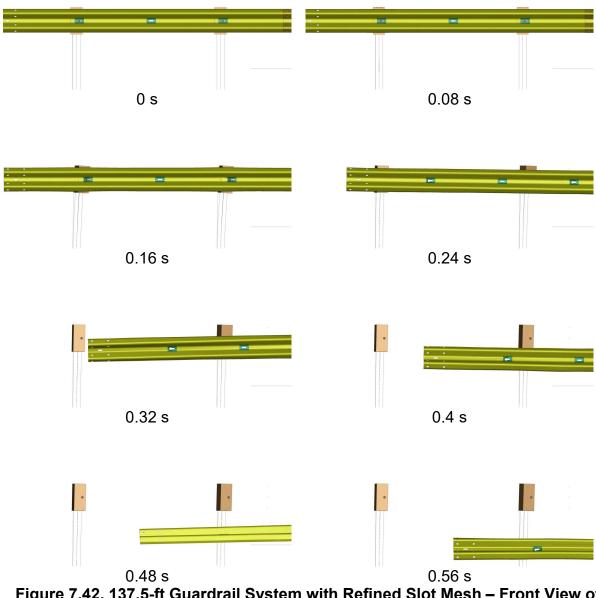


Figure 7.42. 137.5-ft Guardrail System with Refined Slot Mesh – Front View of Downstream Posts During *MASH* Test 3-11

7.3.3. 162.5-ft Guardrail System with Refined Slot Mesh

The length of the guardrail system was increased by adding 25-ft to the downstream side for a total length of 162.5-ft. Figure 7.43 shows an overhead view of the finite element model. The system was evaluated using a simulated *MASH* Test 3-11. The 2270P *MASH* pickup truck impacted the guardrail system at 62 mi/h with an impact angle of 25°. The impact point was 138.3-ft from the unanchored downstream end of the rail and is shown below in Figure 7.44.

Figure 7.43. Overhead View of 162.5-ft Long Guardrail System

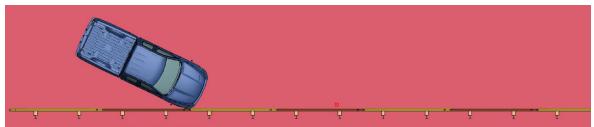
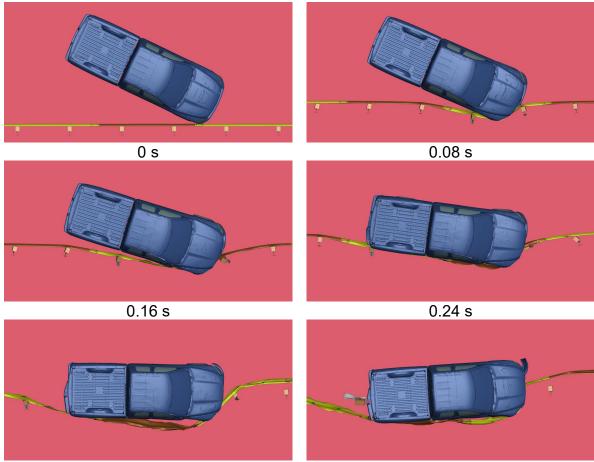



Figure 7.44. Overhead View of Impact Point for 162.5-ft Long Guardrail System

Figure 7.45, Figure 7.46, Figure 7.47, and Figure 7.48 show the sequential frames of *MASH* Test 3-11 on the 162.5-ft system with 1 mm thick refined slot elements. During the impact, the w-beam rail was pulled off the posts downstream of impact and consequently lost its ability to redirect the pickup truck. The researchers then increased the length of the guardrail system, and this model is discussed in the next section.

0.4 s

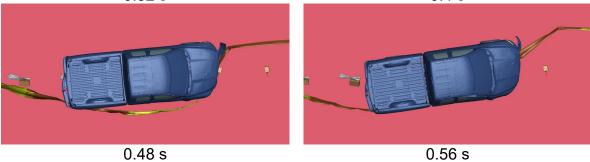


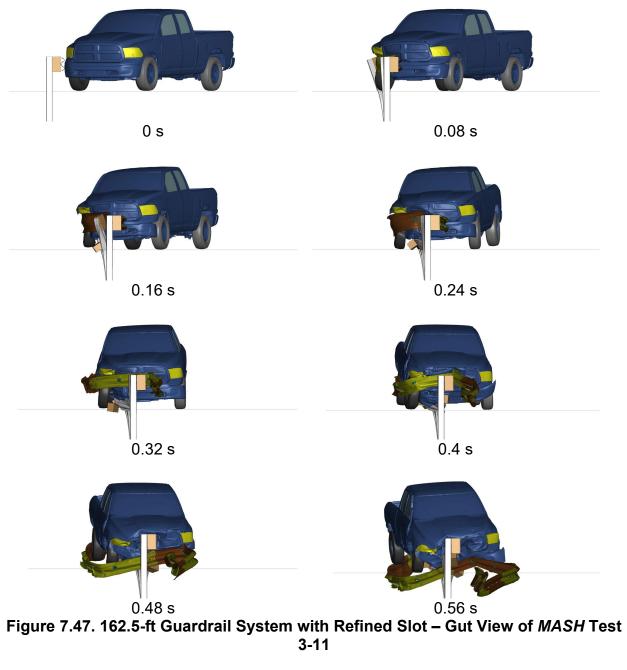
Figure 7.45. 162.5-ft Guardrail System with Refined Slot – Overhead View of *MASH* Test 3-11

0 s

0.08 s

0.16 s

0.24 s



0.32 s

0.48 s 0.56 s Figure 7.46. 162.5-ft Guardrail System with Refined Slot – Rear View of MASH Test 3-11

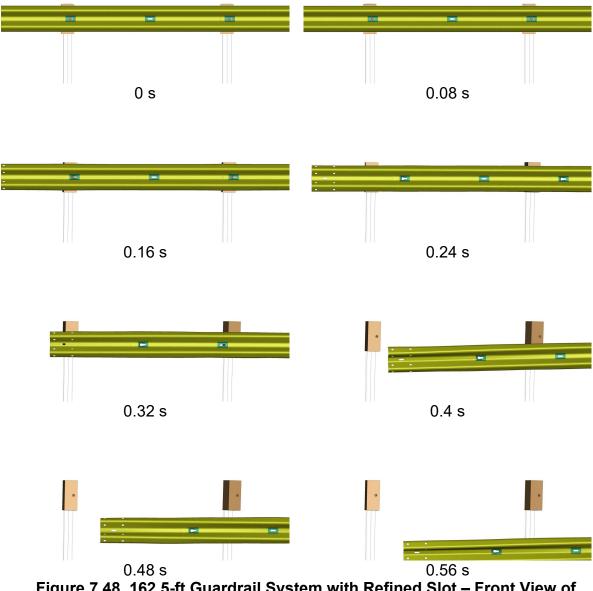
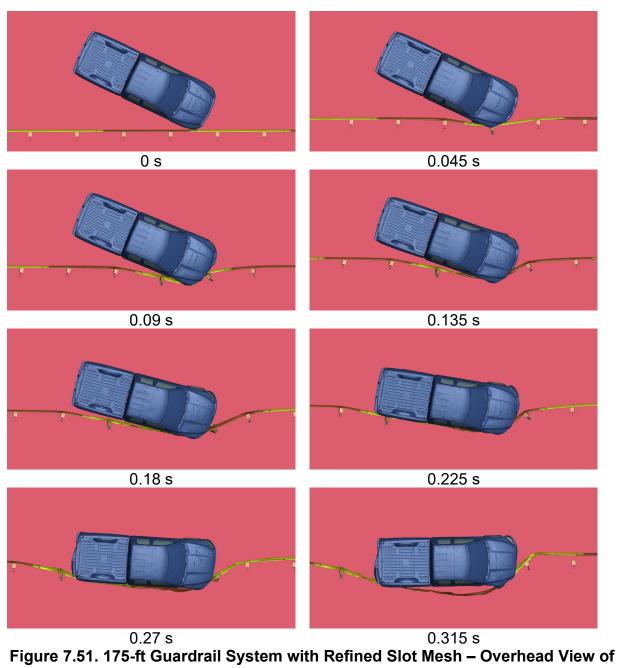


Figure 7.48. 162.5-ft Guardrail System with Refined Slot – Front View of Downstream Posts During *MASH* Test 3-11


7.3.4. 175-ft Guardrail System with Refined Slot Mesh

The length of the guardrail system was increased by adding 25-ft to the downstream side for a total length of 175-ft. Figure 7.49 shows an overhead view of the finite element model. The system was evaluated using a simulated *MASH* Test 3-11. The 2270P *MASH* pickup truck impacted the guardrail system at 62 mi/h with an impact angle of 25°. The impact point was 150.8-ft from the unanchored downstream end of the rail and is shown below in Figure 7.50.

Figure 7.49. Overhead View of 175-ft Long Guardrail System

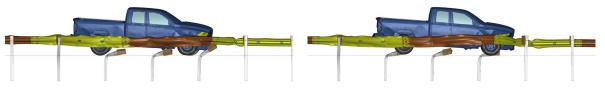
Figure 7.50. Overhead View of Impact Point for 175-ft Long Guardrail System

Figure 7.51, Figure 7.52, Figure 7.53, and Figure 7.54 show the sequential frames of *MASH* Test 3-11 on the 175-ft system with 1 mm thick refined slot elements. During the impact, the w-beam rail was pulled off the posts downstream of impact and consequently lost its ability to redirect the pickup truck. The researchers then increased the length of the guardrail system, and this model is discussed in the next section.

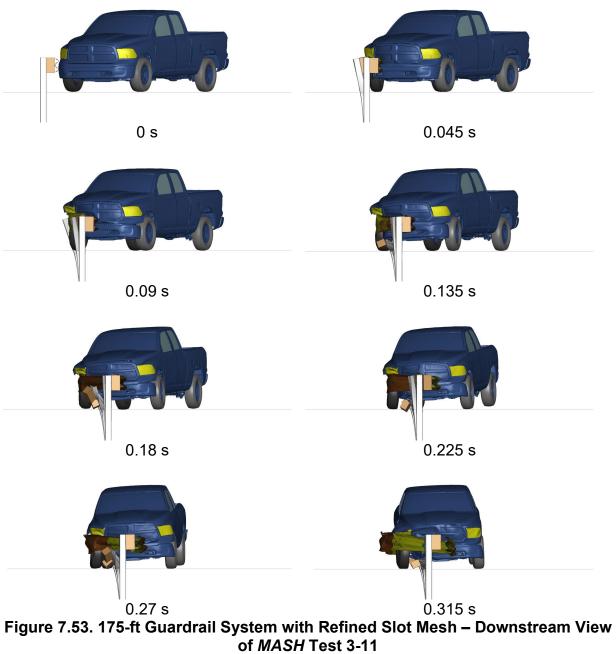
MASH Test 3-11

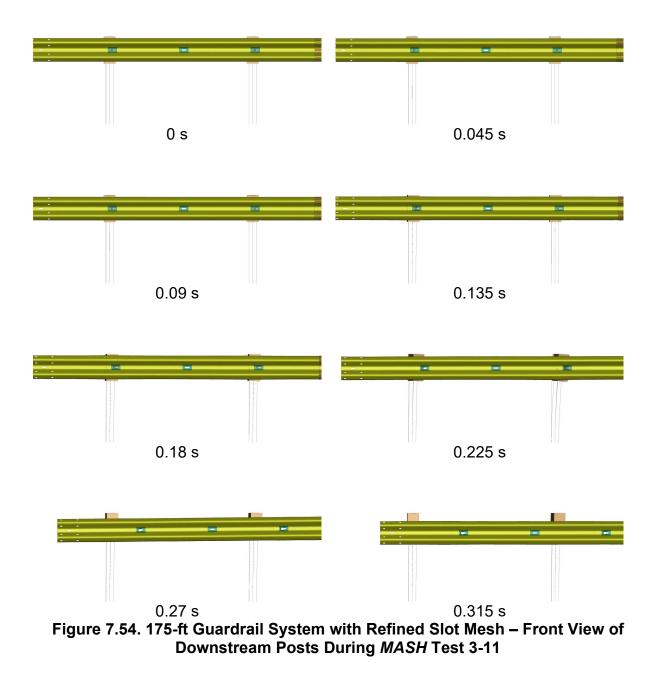
0 s

0.045 s


0.09 s

0.135 s




0.18 s

0.27 s 0.315 s Figure 7.52. 175-ft Guardrail System with Refined Slot Mesh – Rear View of MASH Test 3-11

7.3.5. 187.5-ft Guardrail System with Refined Slot Mesh

The length of the guardrail system was increased by adding 12.5-ft to the downstream side for a total length of 187.5-ft. Figure 7.55 shows an overhead view of the finite element model. The system was evaluated using a simulated *MASH* Test 3-11. The 2270P *MASH* pickup truck impacted the guardrail system at 62 mi/h with an impact angle of 25°. The impact point was 163.3-ft from the unanchored downstream end of the rail and is shown below in Figure 7.56.

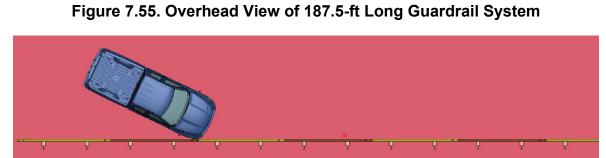
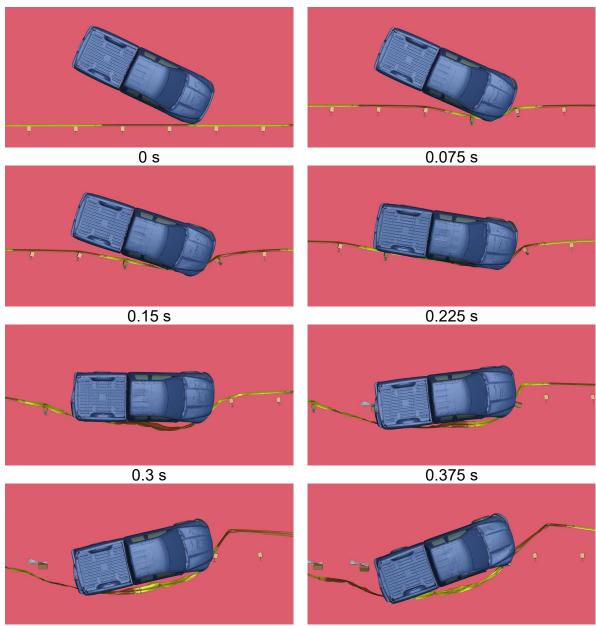
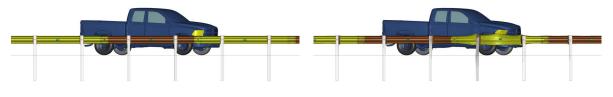




Figure 7.56. Overhead View of Impact Point for 187.5-ft Long Guardrail System

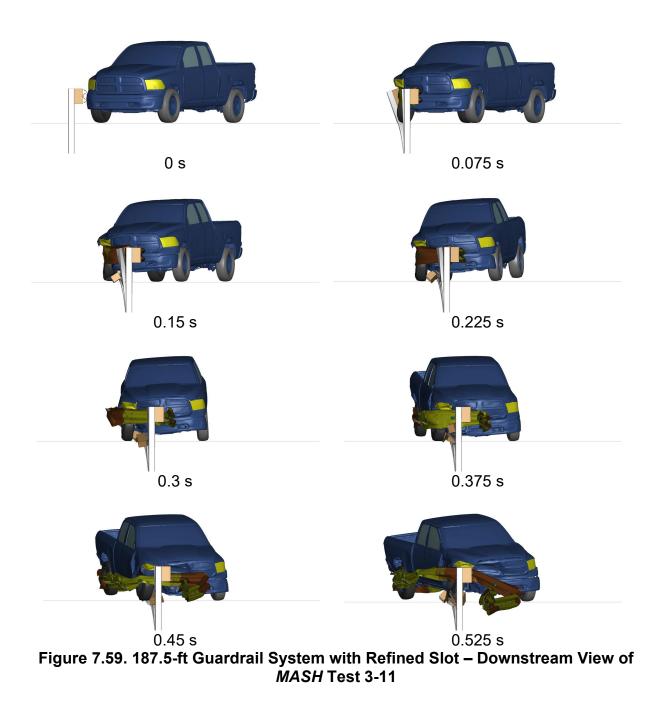
Figure 7.57, Figure 7.58, Figure 7.59, and Figure 7.60 show the sequential frames of *MASH* Test 3-11 on the 187.5-ft system with 1 mm thick refined slot element. During the impact, the w-beam rail was pulled off the posts downstream of impact and failed to meet the project objective. The researchers then increased the length of the guardrail system, and this model is discussed in the next section.

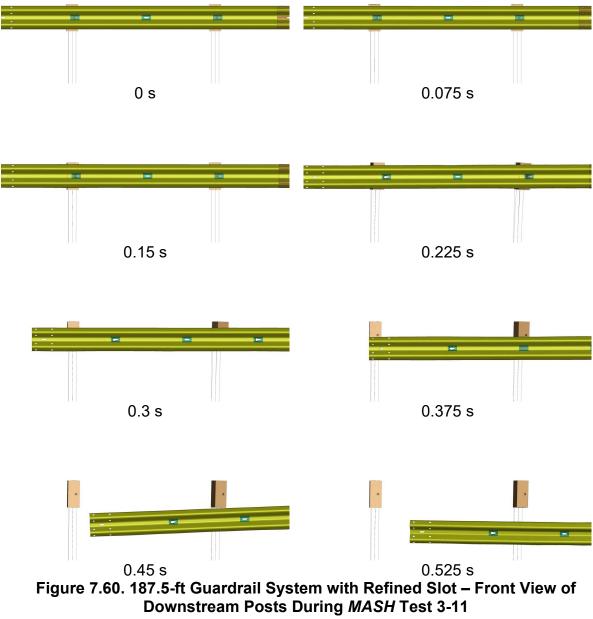
0.45 s 0.525 s Figure 7.57. 187.5-ft Guardrail System with Refined Slot – Overhead View of MASH Test 3-11

0 s

0.075 s

0.15 s

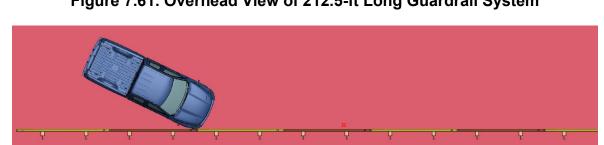
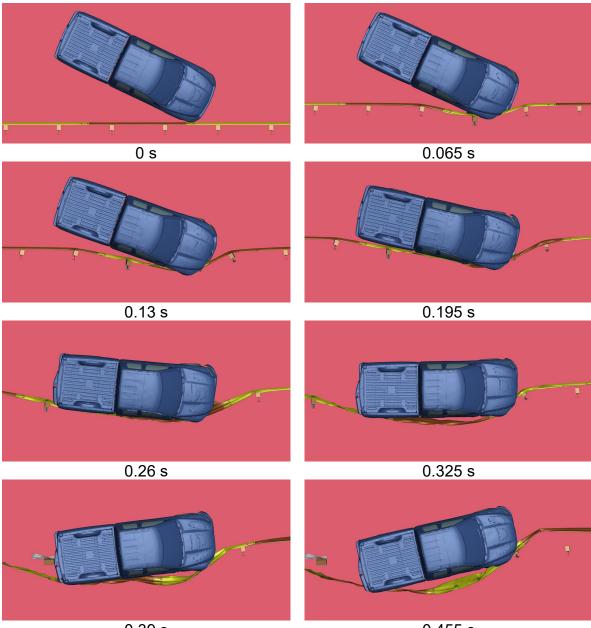



0.3 s

0.45 s 0.525 s Figure 7.58. 187.5-ft Guardrail System with Refined Slot – Rear View of MASH Test 3-11

7.3.6. 212.5-ft Guardrail System with Refined Slot Mesh

The length of the guardrail system was increased by adding 25-ft to the downstream side for a total length of 212.5-ft. Figure 7.61 shows an overhead view of the finite element model. The system was evaluated using a simulated MASH Test 3-11. The 2270P MASH pickup truck impacted the guardrail system at 62 mi/h with an impact angle of 25°. The impact point was 188.3-ft from the unanchored downstream end of the rail and is shown below in Figure 7.62.

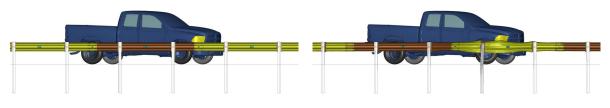

Figure 7.61. Overhead View of 212.5-ft Long Guardrail System

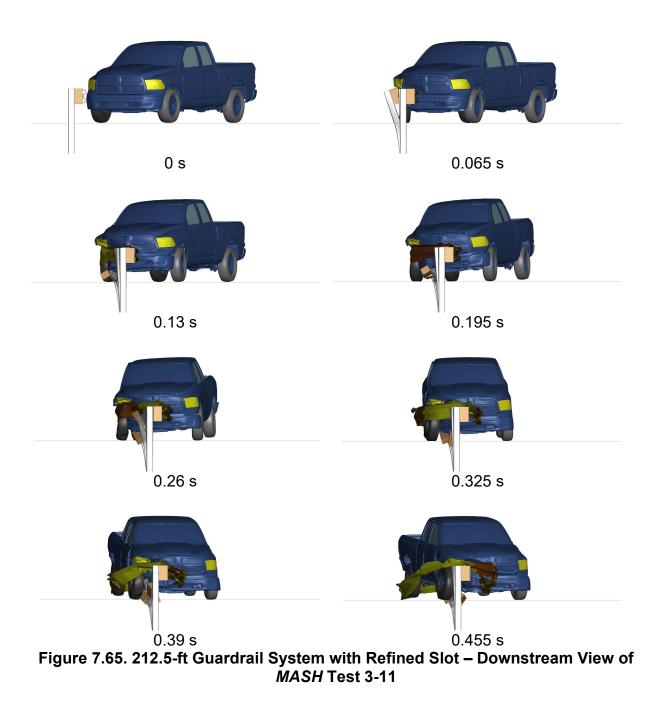
Figure 7.62. Overhead View of Impact Point for 212.5-ft Long Guardrail System

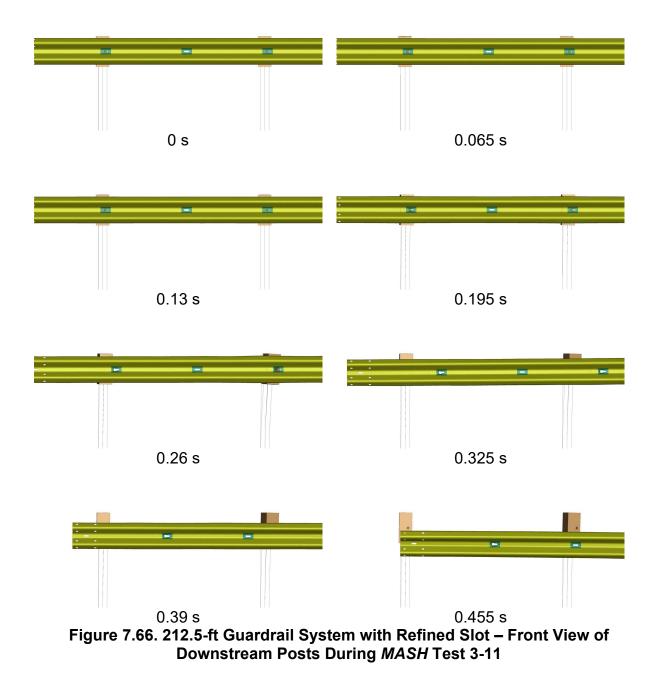
Figure 7.63, Figure 7.64, Figure 7.65, and Figure 7.66 show the sequential frames of MASH Test 3-11 on the 212.5-ft system with 1 mm thick refined slot element. During the impact, the w-beam rail was pulled off the posts downstream of impact and failed to meet the project objective. The researchers then increased the length of the guardrail system, and this model is discussed in the next section.

0.39 s 0.455 s Figure 7.63. 212.5-ft Guardrail System with Refined Slot – Overhead View of MASH Test 3-11

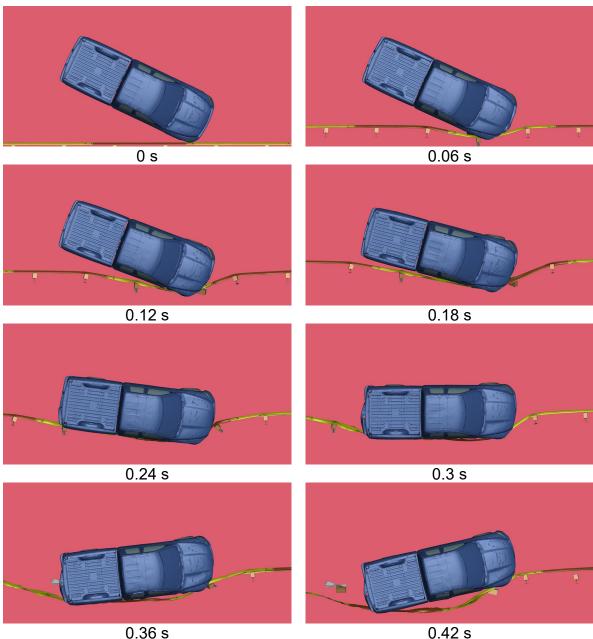
0.065 s

0.13 s




0.26 s

0.39 s 0.455 s Figure 7.64. 212.5-ft Guardrail System with Refined Slot – Rear View of MASH Test 3-11


7.3.7. 225-ft Guardrail System with Refined Slot Mesh

The length of the guardrail system was increased by adding 12.5-ft to the downstream side for a total length of 225-ft. Figure 7.67 shows an overhead view of the finite element model. The system was evaluated using a simulated *MASH* Test 3-11. The 2270P *MASH* pickup truck impacted the guardrail system at 62 mi/h with an impact angle of 25°. The impact point was 200.8-ft from the unanchored downstream end of the rail and is shown below in Figure 7.68.

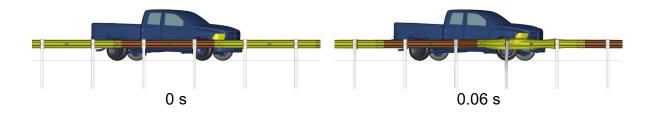
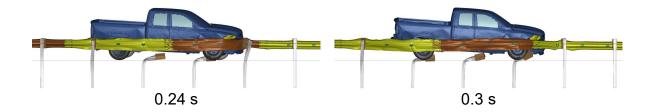
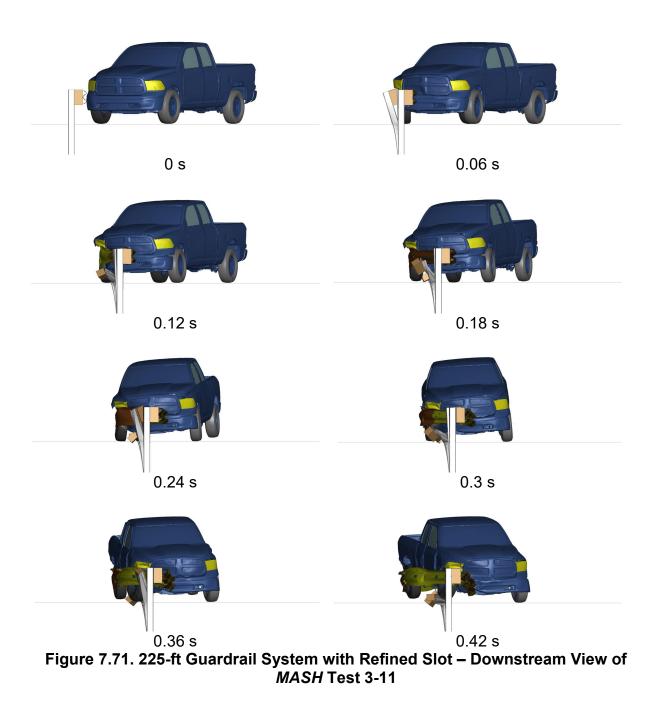
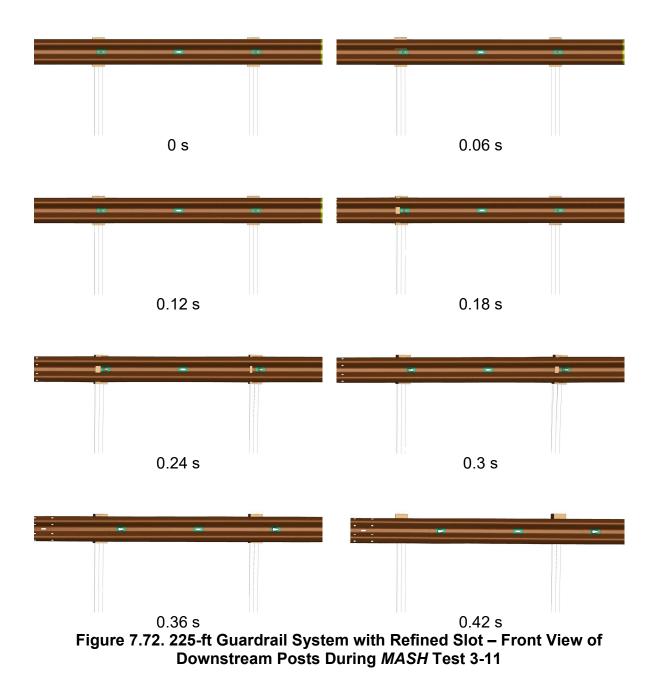


Figure 7.68. Overhead View of Impact Point for 225-ft Long Guardrail System

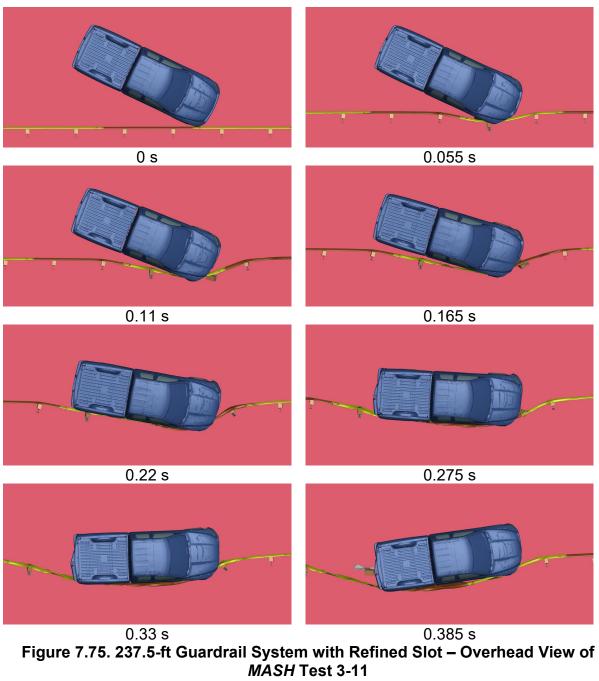

Figure 7.69, Figure 7.70, Figure 7.71, and Figure 7.72 show the sequential frames of *MASH* Test 3-11 on the 225-ft system with 1 mm thick refined slot element. During the impact, the w-beam rail was pulled off the posts downstream of impact and failed to meet the project objective. The researchers then increased the length of the guardrail system, and this model is discussed in the next section.

0.36 s 0.42 s Figure 7.69. 225-ft Guardrail System with Refined Slot – Overhead View of MASH Test 3-11





0.36 s Figure 7.70. 225-ft Guardrail System with Refined Slot – Rear View of MASH Test 3-11


7.3.8. 237.5-ft Guardrail System with Refined Slot Mesh

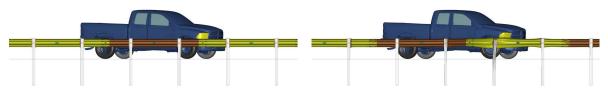

The length of the guardrail system was increased by adding 12.5-ft to the downstream side for a total length of 237.5-ft. Figure 7.73 shows an overhead view of the finite element model. The system was evaluated using a simulated *MASH* Test 3-11. The 2270P *MASH* pickup truck impacted the guardrail system at 62 mi/h with an impact angle of 25°. The impact point was 213.3-ft from the unanchored downstream end of the rail and is shown below in Figure 7.74.

Figure 7.73. Overhead View of 237.5-ft Long Guardrail System

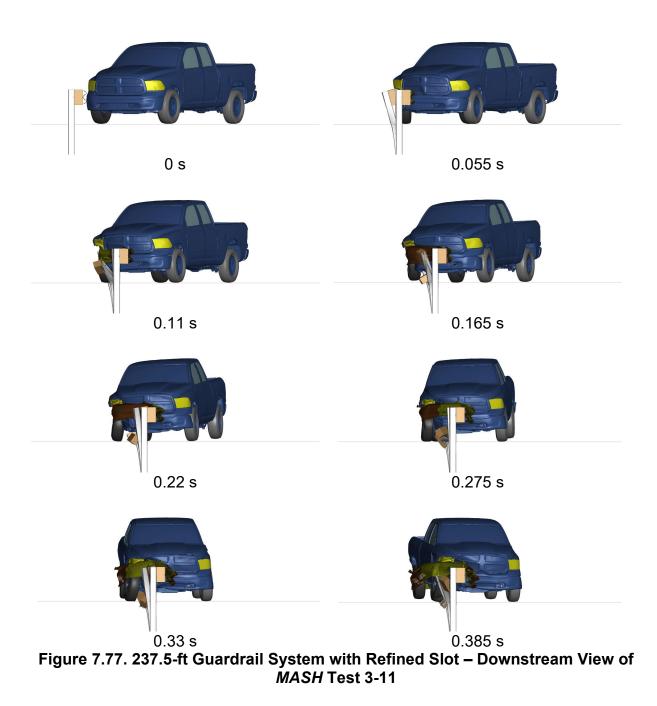
Figure 7.74. Overhead View of Impact Point for 237.5-ft Long Guardrail System

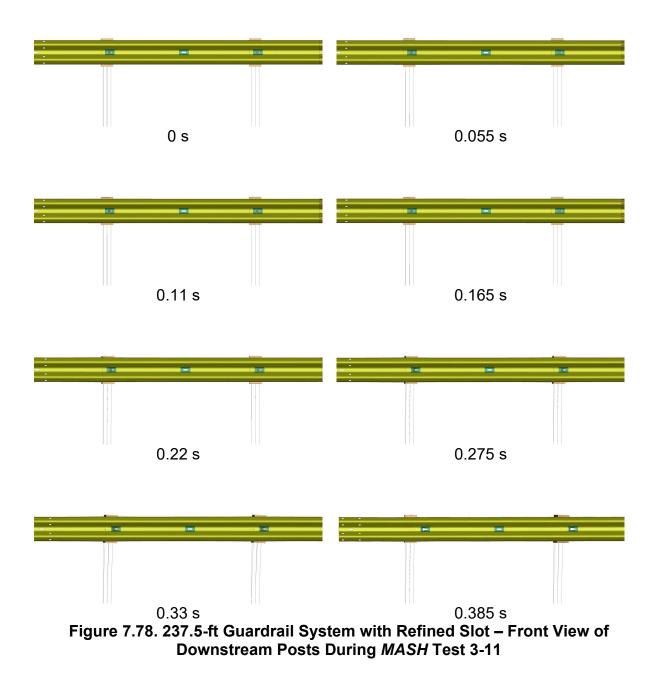
Figure 7.75, Figure 7.76, Figure 7.77, and Figure 7.78 show the sequential frames of *MASH* Test 3-11 on the 237.5-ft system with 1 mm thick refined slot element. During the impact, the w-beam rail was pulled off the posts downstream of impact and failed to meet the project objective. The researchers then increased the length of the guardrail system, and this model is discussed in the next section.

0 s

0.055 s

0.11 s




0.22 s

0.33 s 0.385 s Figure 7.76. 237.5-ft Guardrail System with Refined Slot – Rear View of MASH Test 3-11

7.3.9. 237.5-ft Guardrail System with Refined Slot Mesh and Increased Bolt Retention

The length of the guardrail system was the same as the previous model, but the guardrail bolt was adjusted to reduce the gap between the bolt head and the slot in the rail to ensure a snug fit. This was intended to improve retention between the rail and the post. In the field, guardrail bolts are often extremely tight against the rail and blockout, and the research team wanted to investigate this effect on the redirective performance of the system. **Figure 7.79** shows an overhead view of the finite element model. The system was evaluated using a simulated *MASH* Test 3-11. The 2270P *MASH* pickup truck impacted the guardrail system at 62 mi/h with an impact angle of 25°. The impact point was 213.3-ft from the unanchored downstream end of the rail and is shown below in **Figure 7.80**.

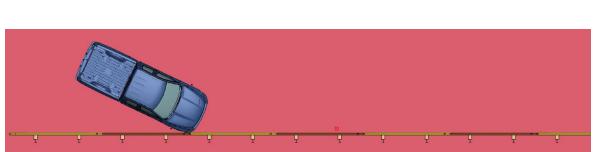


Figure 7.79. Overhead View of 237.5-ft Long Guardrail System

Figure 7.80. Overhead View of Impact Point for 237.5-ft Long Guardrail System

Figure 7.81, Figure 7.82, Figure 7.83, and Figure 7.84 show the sequential frames of *MASH* Test 3-11 on the 237.5-ft system with 1 mm thick refined slot element and increased bolt retention. The OIV was calculated to be 5.5 m/s (preferred limit is 9.1 m/s). The RDA was calculated to be 8.5 G's (preferred limit is 15.0 G's). The simulation showed improved retention between the rail and the post members compared to the previous simulation. Because the simulations of a 250-ft guardrail system (see following section) showed the posts pulled off of the posts, the research team decided to continue the evaluation longer guardrail systems.

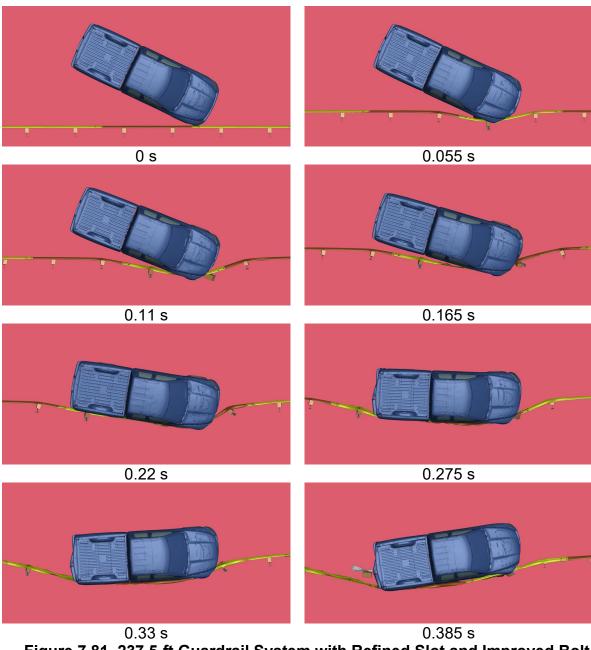
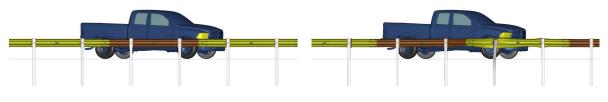



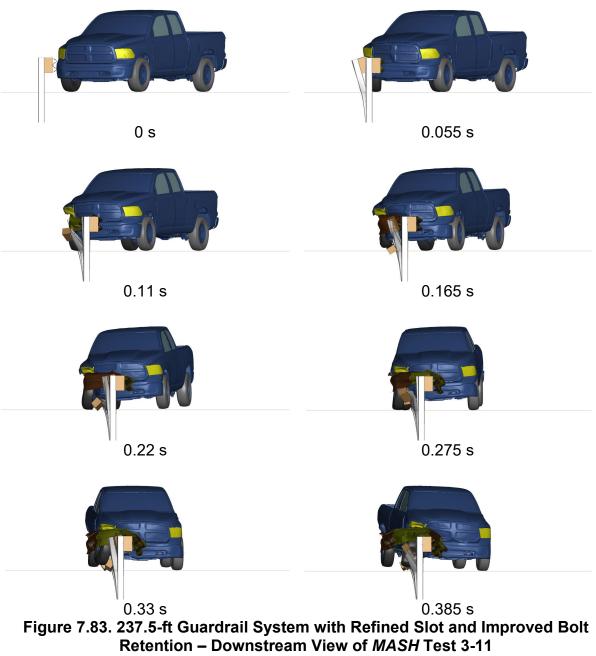
Figure 7.81. 237.5-ft Guardrail System with Refined Slot and Improved Bolt Retention– Overhead View of MASH Test 3-11

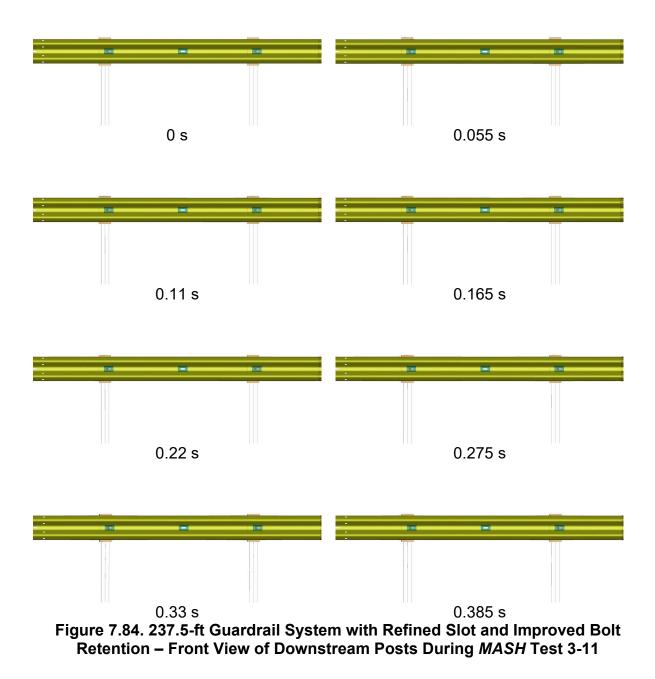
0 s

0.055 s

0.11 s

0.165 s




0.22 s

0.275 s

0.33 s 0.385 s Figure 7.82. 237.5-ft Guardrail System with Refined Slot and Improved Bolt Retention – Rear View of MASH Test 3-11

7.3.10. 250-ft Guardrail System with Refined Slot Mesh

The length of the guardrail system was increased by adding 12.5-ft to the downstream side for a total length of 250-ft. Figure 7.85 shows an overhead view of the finite element model. The system was evaluated using a computer simulated *MASH* Test 3-11. The 2270P *MASH* pickup truck impacted the guardrail system at 62 mi/h with an impact angle of 25°. The impact point was 225.8-ft from the unanchored downstream end of the rail and is shown below in Figure 7.86.

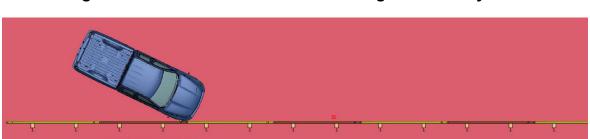


Figure 7.85. Overhead View of 250-ft Long Guardrail System

Figure 7.86. Overhead View of Impact Point for 250-ft Long Guardrail System

Figure 7.87, Figure 7.88, Figure 7.89, and Figure 7.90 show the sequential frames of *MASH* Test 3-11 on the 250-ft system with 1 mm thick refined slot element. During the impact, the w-beam rail was pulled off the posts downstream of impact and failed to meet the project objective. The researchers then increased the length of the guardrail system, and this model is discussed in the next section.

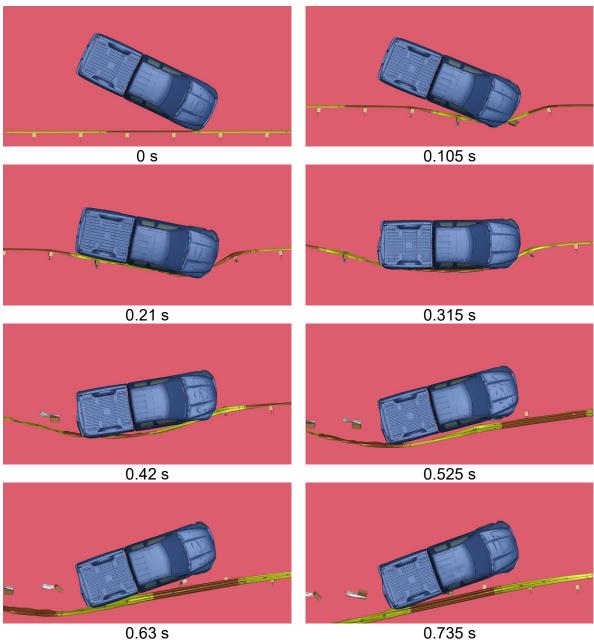
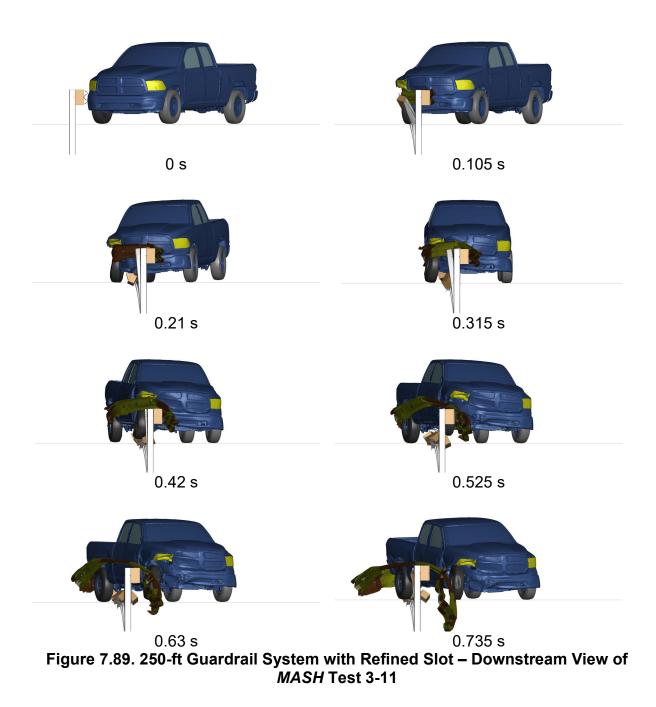


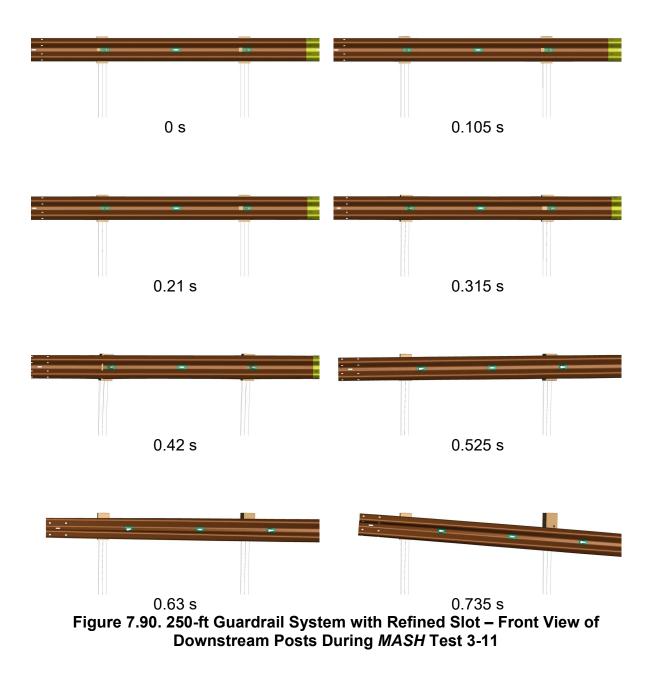
Figure 7.87. 250-ft Guardrail System with Refined Slot – Overhead View of MASH Test 3-11

0.105 s

0.21 s

0.315 s




0.42 s

0.525 s

3-11

7.3.11. 262.5-ft Guardrail System with Refined Slot

The length of the guardrail system was increased by adding 12.5-ft to the downstream side for a total length of 262.5-ft. This simulation was performed with the impact point 238.3-ft from the unanchored downstream end of the installation. Figure 7.91 shows an overhead view of the finite element model. The system was evaluated using a simulated *MASH* Test 3-11. The 2270P *MASH* pickup truck impacted the guardrail system at 62 mi/h with an impact angle of 25°. The impact point was 238.3-ft from the unanchored downstream end of the rail and is shown below in Figure 7.92.

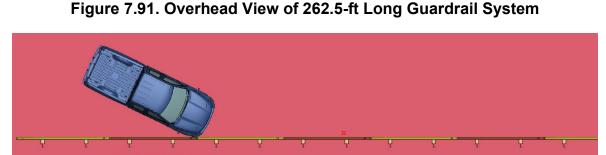
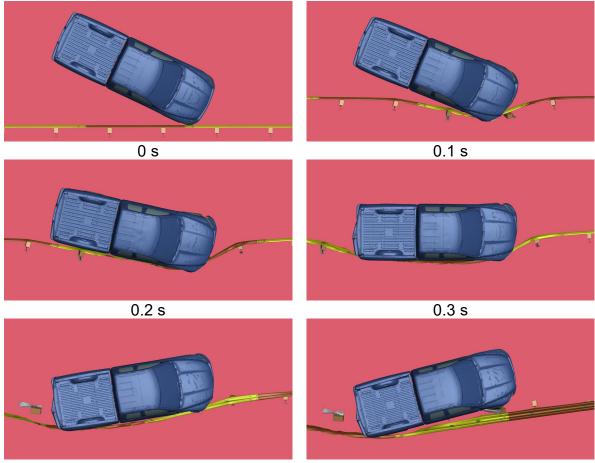



Figure 7.92. Overhead View of Impact Point for 262.5-ft Long Guardrail System

Figure 7.93, **Error! Reference source not found.**, Figure 7.95, and Figure 7.96 show the sequential frames of *MASH* Test 3-11 on the 262.5-ft system with refined slot mesh. The downstream posts maintained connectivity to the posts, and the vehicle was successfully contained and redirected. The OIV was calculated to be 5.2 m/s (preferred limit is 9.1 m/s). The RDA was calculated to be 9.4 G's (preferred limit is 15.0 G's). Based on these simulation results, the research team determined the minimum length-of-need for a guardrail system without downstream anchorage was 262.5 ft. However, this would need to be verified through full-scale testing, based upon the previous testing results.

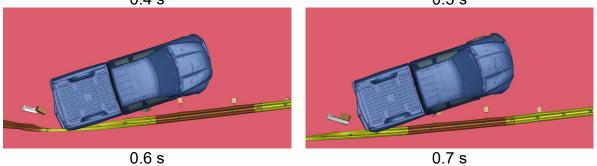


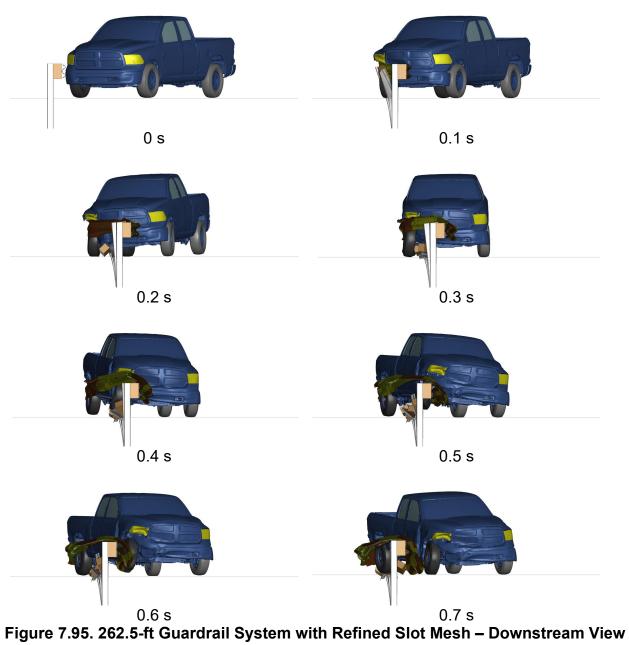
Figure 7.93. 262.5-ft Guardrail System with Refined Slot Mesh – Overhead View of *MASH* Test 3-11

0 s

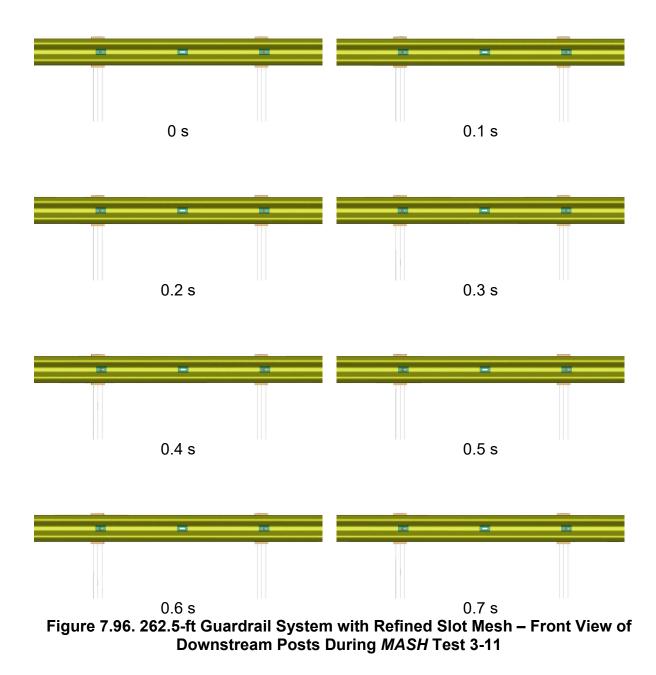
0.1 s

0.2 s

0.3 s



0.4 s



0.6 s 0.7 s Figure 7.94. 262.5-ft Guardrail System with Refined Slot Mesh – Rear View of *MASH* Test 3-11

of MASH Test 3-11

7.4. GUARDRAIL WASHER EVALUATION

From the previous simulations, the research team determined the minimum length-of-need of w-beam guardrail required to maintain connectivity of the guardrail system and its redirective capability. This 262.5 ft length-of-need was determined by the technical representative to be impractical for field applications. Consequently, the research team in conjunction with the technical representative decided to evaluate alternative improvements for maintaining the connectivity between the rail and post members.

The most practical solution initially developed was the inclusion of industry standard guardrail washers on the downstream end posts between the w-beam rail and the bolt head, as shown in Figure 7.97. This washer is intended to be a temporary feature during guardrail construction and only located on a downstream post until a downstream terminal is installed. Consequently, the inclusion of washers at the downstream end posts was investigated through the computer simulations discussed below.

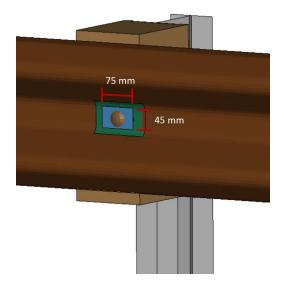
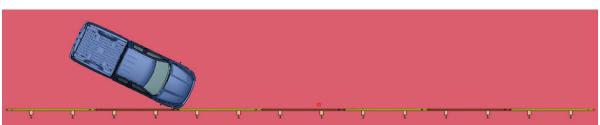
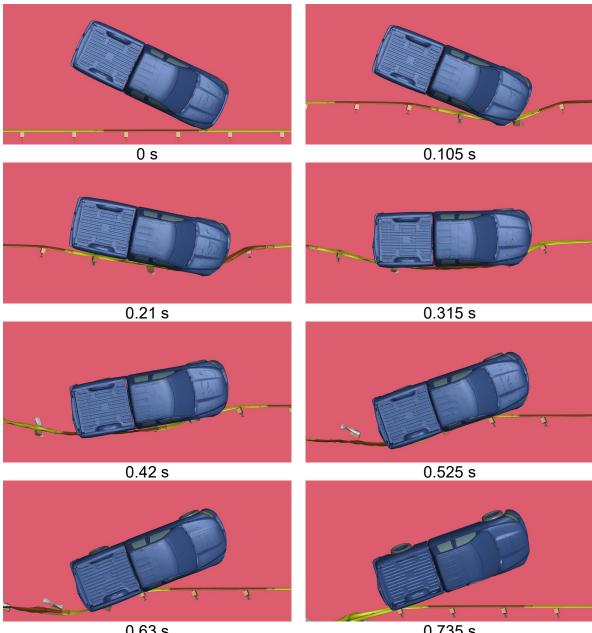


Figure 7.97. 2.2.23 – Mounted Guardrail Washer

7.4.1. 87.5-ft GUARDRAIL SYSTEM WITH REFINED SLOT MESH and One End Washer

One guardrail washer was added to the most downstream post, and the length of the guardrail system was kept at 87.5-ft. Figure 7.98 shows an overhead view of the finite element model. The system was evaluated using a simulated *MASH* Test 3-11. The 2270P *MASH* pickup truck impacted the guardrail system at 62 mi/h with an impact angle of 25°. The impact point was 63.3-ft from the unanchored downstream end of the rail and is shown below in Figure 7.99.

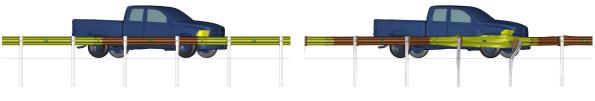

Figure 7.98. Overhead View of 87.5-ft Long Guardrail System

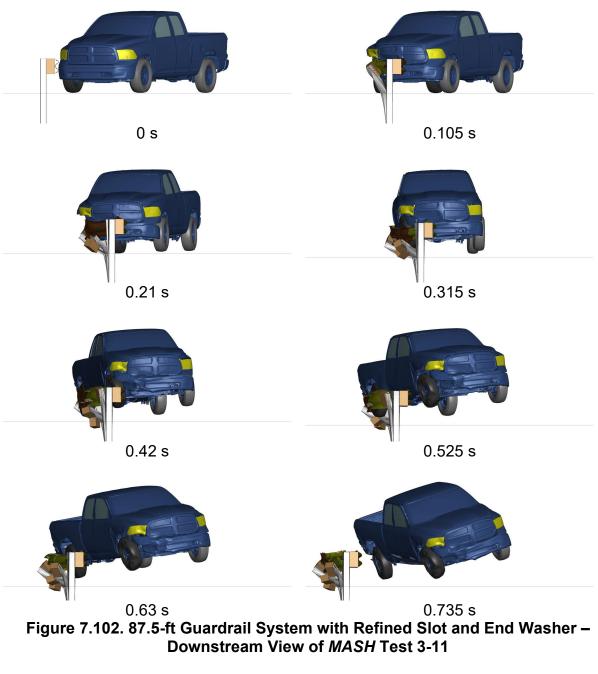
Figure 7.99. Overhead View of Impact Point for 87.5-ft Long Guardrail System

Figure 7.100, Figure 7.101, Figure 7.102, and Figure 7.103 show the sequential frames of *MASH* Test 3-11 on the 87.5-ft system with refined slot element and end washer. The OIV was calculated to be 6.0 m/s (preferred limit is 9.1 m/s). The RDA was calculated to be 9.4 G's (preferred limit is 15 G's). This configuration passed *MASH* Test 3-11 by successfully containing and redirecting the vehicle. However, the research team noticed a large amount of instability in the post-impact vehicle behavior. Therefore, the research team investigated this instability by adding tire failure into the vehicle models in the following simulations.

0.63 s Figure 7.100. 87.5-ft Guardrail System with Refined Slot and End Washer – Overhead View of MASH Test 3-11

0.105 s

0.21 s


0.315 s

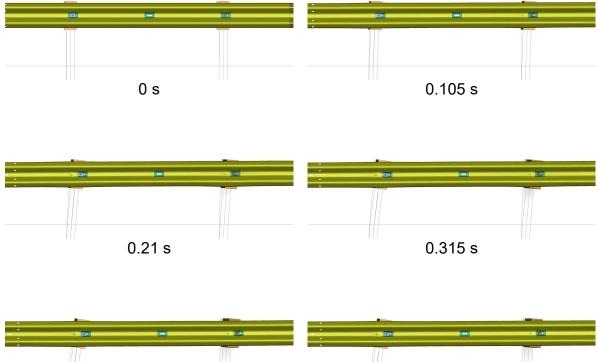


Figure 7.103. 87.5-ft Guardrail System with Refined Slot and End Washer – Front View of Downstream Posts During *MASH* Test 3-11

7.4.2. 87.5-ft GUARDRAIL SYSTEM WITH REFINED SLOT MESH and One End Washer, Improved Vehicle Model

The previous model was reused in this simulation with the addition of tire failure to the vehicle model. The vehicle model with tire failure was also utilized in subsequent simulations to mitigate numerical vehicle instability. Figure 7.104 shows an overhead view of the finite element model. The system was evaluated using a simulated *MASH* Test 3-11. The 2270P *MASH* pickup truck impacted the guardrail system at 62 mi/h with an impact angle of 25°. The impact point was 63.3-ft from the unanchored downstream end of the rail and is shown below in Figure 7.105.

Figure 7.104. Overhead View of 87.5-ft Long Guardrail System

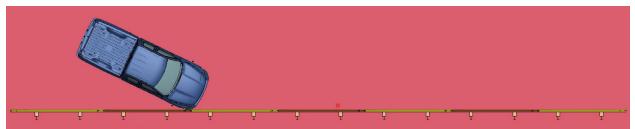
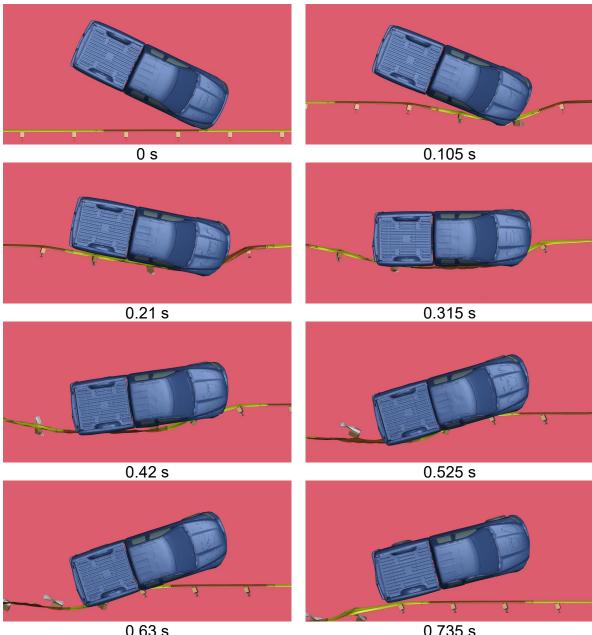
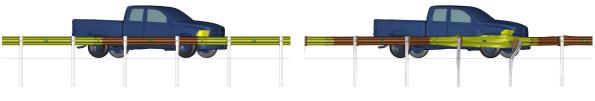




Figure 7.105. Overhead View of Impact Point for 87.5-ft Long Guardrail System

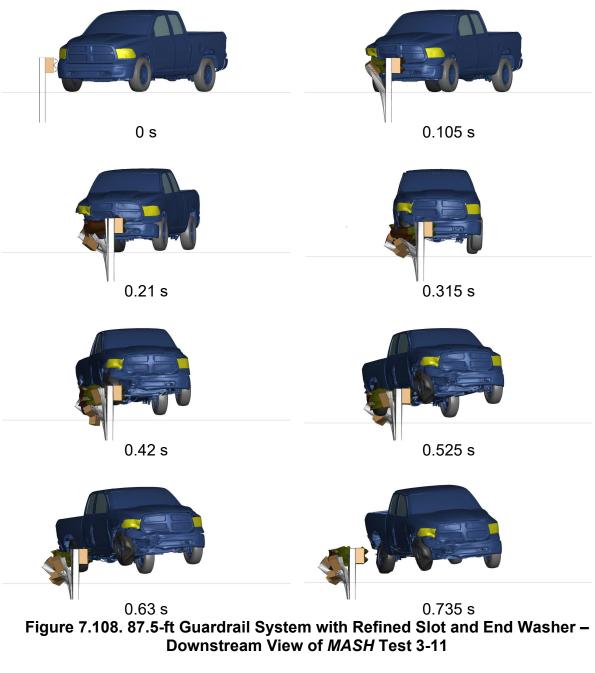
Figure 7.106, Figure 7.107, Figure 7.108, and Figure 7.109 show the sequential frames of *MASH* Test 3-11 on the 87.5-ft system with refined slot element and end washer. The OIV was calculated to be 5.9 m/s (preferred limit is 9.1 m/s). The RDA was calculated to be 8.0 G's (preferred limit is 15 G's). This configuration passed *MASH* Test 3-11 by successfully containing and redirecting the vehicle.

0.63 s Figure 7.106. 87.5-ft Guardrail System with Refined Slot and End Washer – Overhead View of MASH Test 3-11

0.105 s

0.21 s

0.315 s



0.525 s

Figure 7.107. 87.5-ft Guardrail System with Refined Slot and End Washer – Rear View of *MASH* Test 3-11

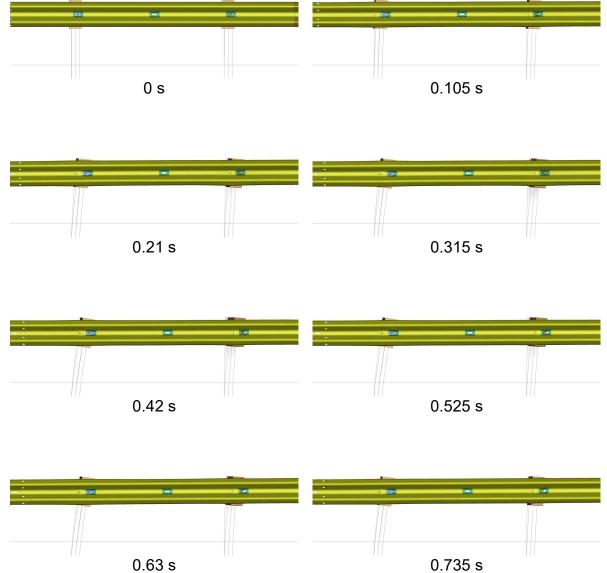


Figure 7.109. 87.5-ft Guardrail System with Refined Slot and End Washer – Front View of Downstream Posts During *MASH* Test 3-11

7.4.3. 87.5-ft GUARDRAIL SYSTEM WITH REFINED SLOT MESH and two End Washers

Compared to the previous model, an additional guardrail washer was added at the second most downstream post between the w-beam rail and the bolt head. The research team included this additional washer because the previous simulation showed the washer may pull out of the w-beam guardrail slot. Therefore, an additional washer would provide additional tensile resistance. Figure 7.110 shows an overhead view of the finite element model. The system was evaluated using a computer simulated *MASH* Test 3-11. The 2270P *MASH* pickup truck impacted the guardrail system at 62 mi/h with an impact angle of 25°. The impact point was 63.3-ft from the unanchored downstream end of the rail and is shown below in Figure 7.111.

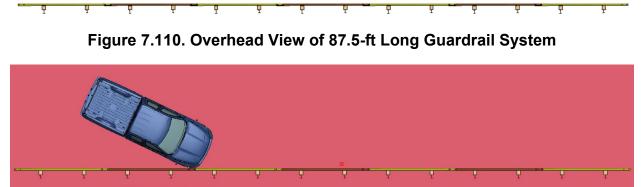


Figure 7.111. Overhead View of Impact Point for 87.5-ft Long Guardrail System

Figure 7.112, Figure 7.113, Figure 7.114, and Figure 7.115 show the sequential frames of *MASH* Test 3-11 on the 87.5-ft system with refined slot element and end washers. The OIV was calculated to be 6.1 m/s (preferred limit is 9.1 m/s). The RDA was calculated to be 7.6 G's (preferred limit is 15 G's). This configuration passed *MASH* Test 3-11 by successfully containing and redirecting the vehicle.

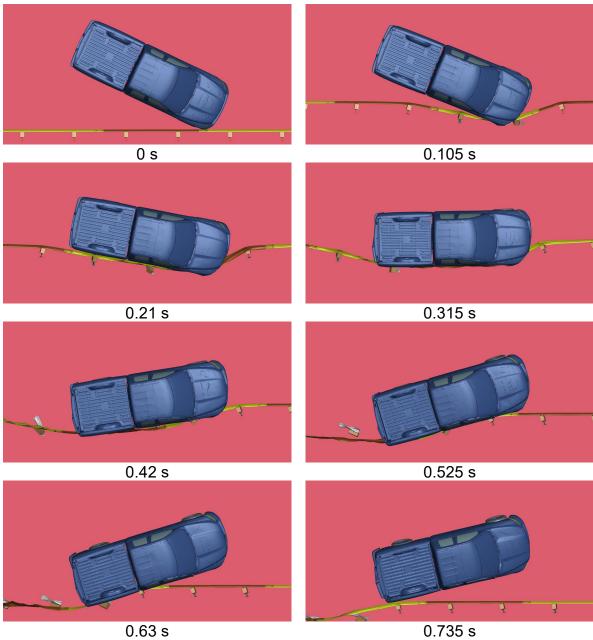
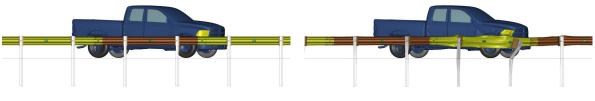



Figure 7.112. 87.5-ft Guardrail System with Refined Slot and Two End Washers – Overhead View of *MASH* Test 3-11

0.105 s

0.63 s Figure 7.113. 87.5-ft Guardrail System with Refined Slot and Two End Washers – Rear View of MASH Test 3-11

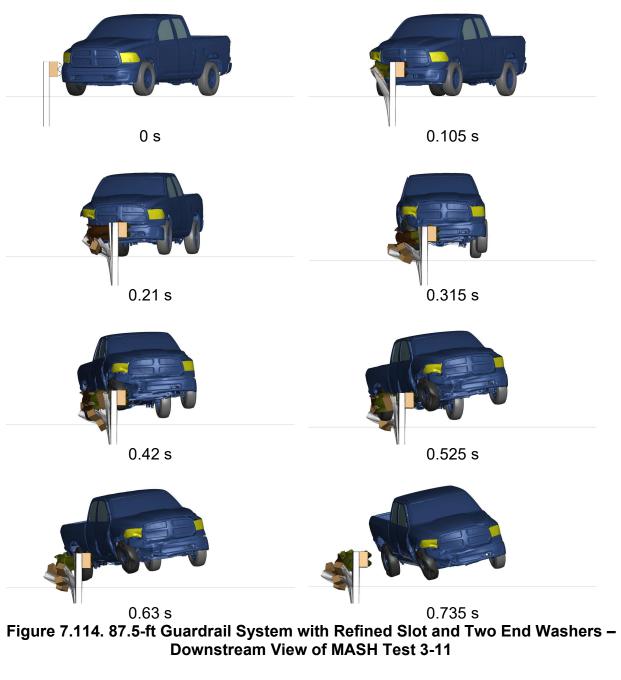


Figure 7.115. 87.5-ft Guardrail System with Refined Slot and Two End Washers – Front View of Downstream Posts During *MASH* Test 3-11

7.4.4. 75-ft GUARDRAIL SYSTEM WITH REFINED SLOT MESH and two End Washers

The length of the previous 87.5 ft guardrail system model was reduced to 75-ft, but the two downstream end posts continued to include guardrail washers. Figure 7.116 shows an overhead view of the finite element model. The system was evaluated using a simulated *MASH* Test 3-11. The 2270P *MASH* pickup truck impacted the guardrail system at 62 mi/h with an impact angle of 25°. The impact point was 50.8-ft from the unanchored downstream end of the rail and is shown below in Figure 7.117.

Figure 7.116. Overhead View of 75-ft Long Guardrail System

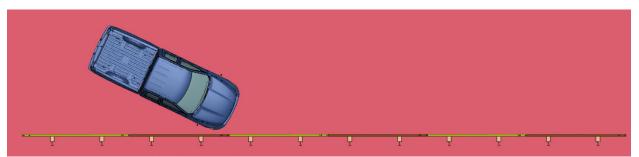
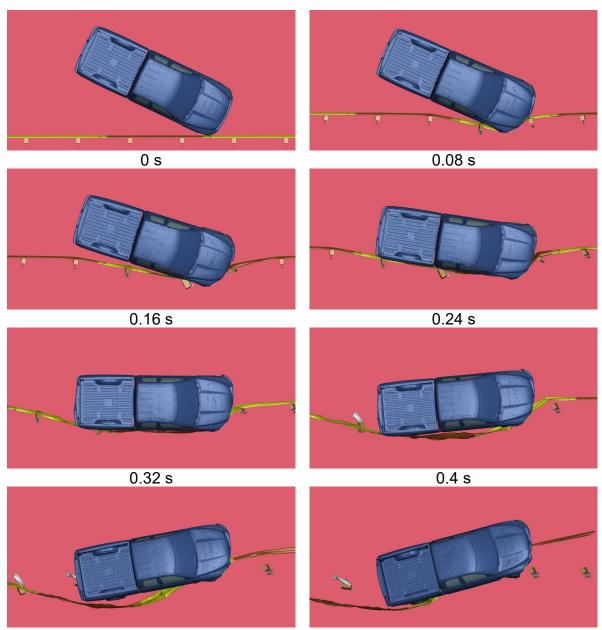
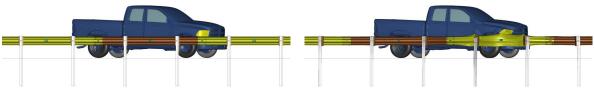
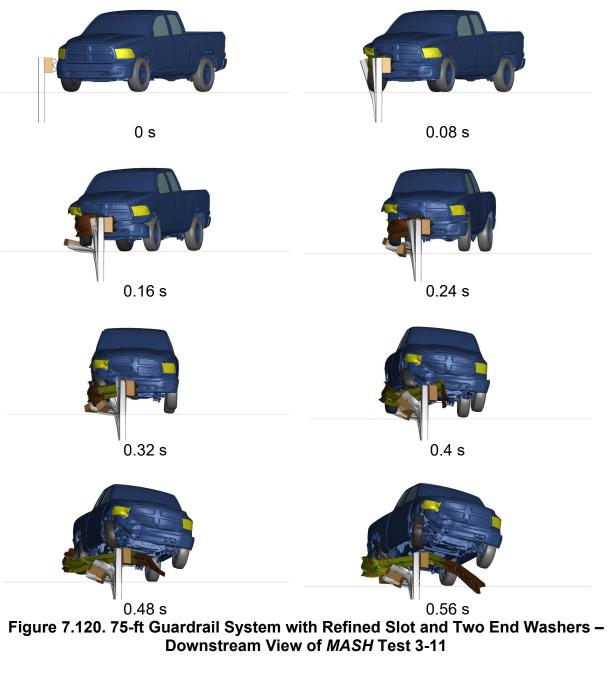




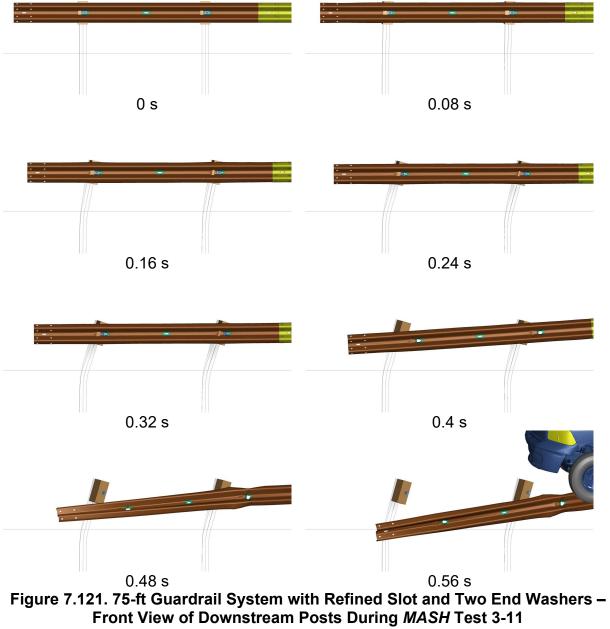
Figure 7.117. Overhead View of Impact Point for 75-ft Long Guardrail System

Figure 7.118, Figure 7.119, Figure 7.120, and Figure 7.121 show the sequential frames of *MASH* Test 3-11 on the 75-ft system with 1 mm thick refined slot element and two downstream washers. During the impact, the w-beam rail was pulled off the posts downstream of impact and failed to meet the project objective. Therefore, the 87.5 ft length-of-need with two downstream end post washers was determined to the shortest which provided redirective capability.

0.48 s 0.56 s Figure 7.118. 75-ft Guardrail System with Refined Slot and Two End Washers – Overhead View of MASH Test 3-11

0.08 s


0.16 s


0.24 s

0.48 s Figure 7.119. 75-ft Guardrail System with Refined Slot and Two End Washers – Rear View of *MASH* Test 3-11

7.4.5. 62.5-ft GUARDRAIL SYSTEM WITH REFINED SLOT MESH and two End Washers

The length of the previous 75 ft guardrail system model was reduced to 62.5 ft, but the two downstream end posts continued to include guardrail washers. Figure 7.122 shows an overhead view of the finite element model. The system was evaluated using a simulated *MASH* Test 3-11. The 2270P *MASH* pickup truck impacted the guardrail system at 62 mi/h with an impact angle of 25°. The impact point was 38.3-ft from the unanchored downstream end of the rail and is shown below in Figure 7.123.

Figure 7.122. Overhead View of 62.5-ft Long Guardrail System

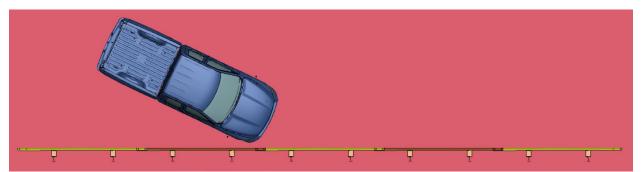
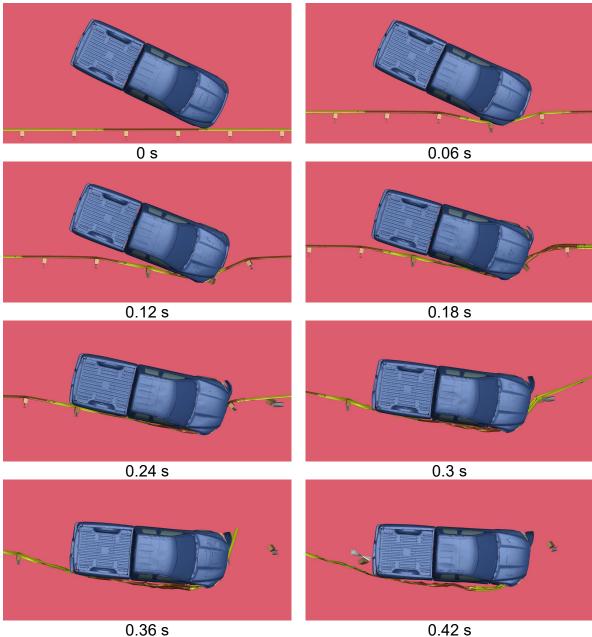
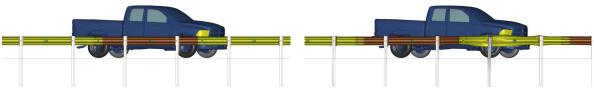




Figure 7.123. Overhead View of Impact Point for 62.5-ft Long Guardrail System

Figure 7.124, Figure 7.125, Figure 7.126, and Figure 7.127 show the sequential frames of *MASH* Test 3-11 on the 62.5-ft system with 1 mm thick refined slot element and downstream washers. During the impact, the w-beam rail was pulled off the posts downstream of impact and failed to meet the project objective.

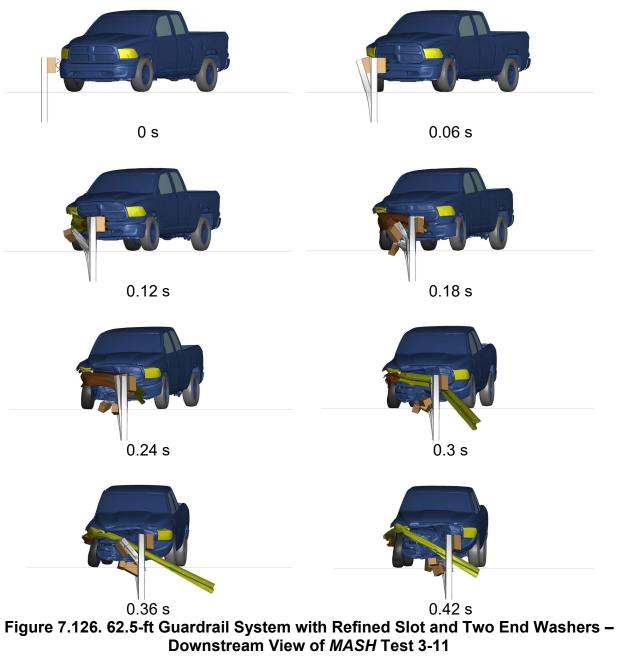
0.36 s 0.42 s Figure 7.124. 62.5-ft Guardrail System with Refined Slot and Two End Washers – Overhead View of MASH Test 3-11



0.06 s

0.12 s

0.18 s



0.24 s

0.36 s 0.42 s Figure 7.125. 62.5-ft Guardrail System with Refined Slot and Two End Washers – Rear View of *MASH* Test 3-11

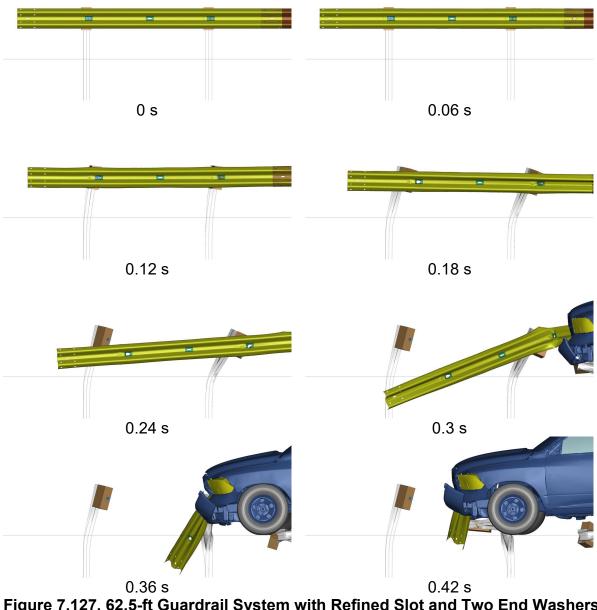
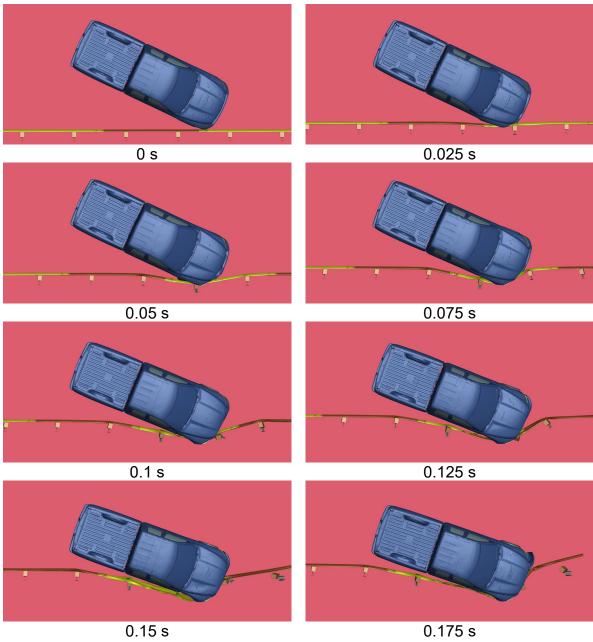


Figure 7.127. 62.5-ft Guardrail System with Refined Slot and Two End Washers – Front View of Downstream Posts During *MASH* Test 3-11


7.4.6. 50-ft GUARDRAIL SYSTEM WITH REFINED SLOT MESH and two End Washers

The length of the previous 62.5 ft guardrail system model was reduced to 50 ft, but the two downstream end posts continued to included guardrail washers. Figure 7.128 shows an overhead view of the finite element model. The system was evaluated using a simulated *MASH* Test 3-11. The 2270P *MASH* pickup truck impacted the guardrail system at 62 mi/h with an impact angle of 25°. The impact point was 25.8-ft from the unanchored downstream end of the rail and is shown below in Figure 7.129.

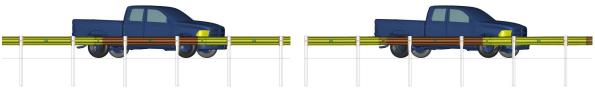


Figure 7.129. Overhead View of Impact Point for 50-ft Long Guardrail System

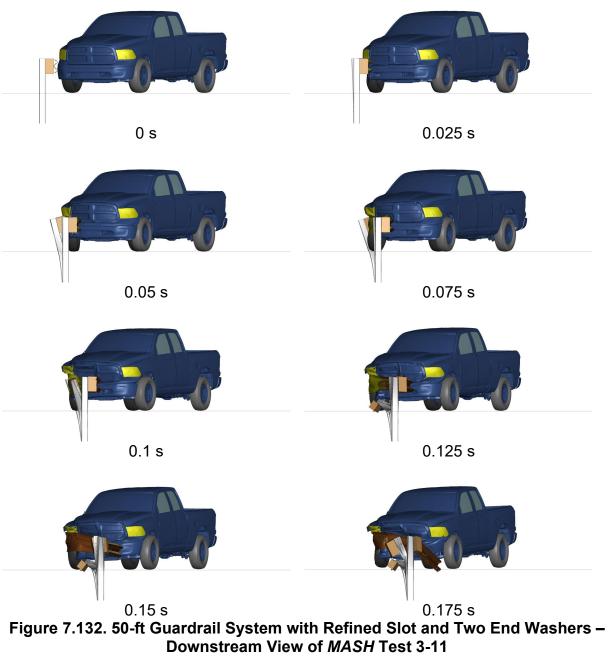
Figure 7.130, Figure 7.131, Figure 7.132, and Figure 7.133 show the sequential frames of *MASH* Test 3-11 on the 50-ft system with 1 mm thick refined slot element and downstream washers. During the impact, the w-beam rail was pulled off the posts downstream of impact and failed to meet the project objective.

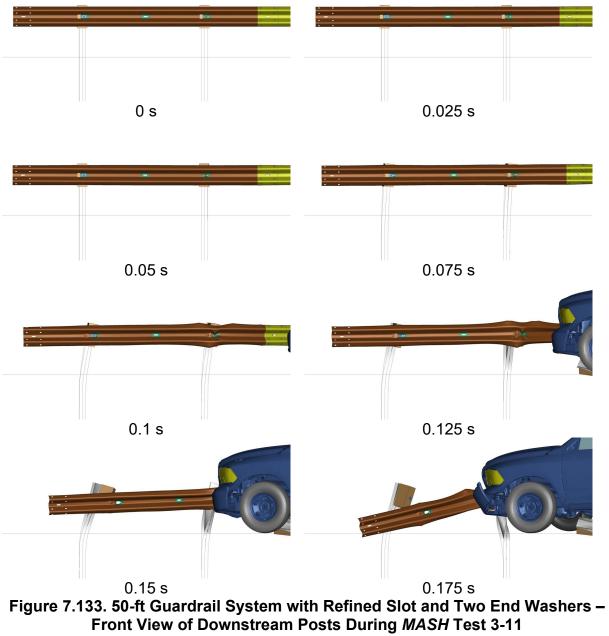
0.15 s Figure 7.130. 50-ft Guardrail System with Refined Slot and Two End Washers – Overhead View of MASH Test 3-11

0.025 s

0.05 s

0.075 s




0.1 s

0.125 s

0.15 s 0.175 s Figure 7.131. 50-ft Guardrail System with Refined Slot and Two End Washers – Rear View of MASH Test 3-11

7.5. COMPUTER SIMULATION CONCLUSIONS

Following the failed crash test, the researchers investigated the computer simulations and developed improvements to the models for increasing the simulations' predictive capabilities. After the models were improved, the researchers parametrically studied the redirective capability of various lengths-of-needs without downstream anchorage. This minimum length-of-need was determined to be 262.5 ft. Upon discussions with the technical representative, this length was determined to be impractical for field use. Consequently, the research team investigated other hardware improvements to maintain connectivity between the posts and rails. Through this effort, the research team evaluated the addition of guardrail washers to the downstream end posts, which would be utilized in a temporary capacity until full termination could be installed. With the inclusion of washers in the models, the research team determined the original physically tested length of 75 ft, but with the additional of guardrail washers to the two most downstream posts, to be the minimum required installation to provide redirective capability. This is assuming 12.5 ft of additional length is accounted for in a MASH compliant terminal, similar to what is discussed earlier in the previous simulation effort. This installation would be further evaluated through full-scale crash testing, which is described in the following chapter.

CHAPTER 8. *MASH* TEST 3-11 (CRASH TEST NO. 614721-01-1)

8.1. TEST DESIGNATION AND ACTUAL IMPACT CONDITIONS

MASH Test 3-11 involves a 2270P vehicle weighing 5000 lb \pm 110 lb impacting the CIP of the longitudinal barrier at an impact speed of 62 mi/h \pm 2.5 mi/h and an angle of 25 degrees \pm 1.5 degrees. The CIP for *MASH* Test 3-11 on the Guardrail without downstream anchorage was 42 inches \pm 12 inches upstream of the centerline of post 11. Figure 4.1 and Figure 8.1 depict the target impact setup.

Figure 8.1. Guardrail without downstream anchorage/Test Vehicle Geometrics for Test No. 614721-01-1.

The 2270P vehicle weighed 5041 lb, and the actual impact speed and angle were 62.1 mi/h and 25.1 degrees. The actual impact point was 42.9 inches upstream from centerline of post 11. Minimum target impact severity (IS) was 106 kip-ft, and actual IS was 116.9 kip-ft.

8.2. WEATHER CONDITIONS

The test was performed on the morning of October 26, 2022. Weather conditions at the time of testing were as follows: wind speed: 2 mi/h; wind direction: 97 degrees (vehicle was traveling at a heading of 195 degrees); temperature: 68°F; relative humidity: 47 percent.

8.3. TEST VEHICLE

Figure 8.2 shows the 2016 RAM 1500 used for the crash test. The vehicle's test inertia weight was 5041 lb, and its gross static weight was 5041 lb. The height to the lower edge of the vehicle bumper was 11.75 inches, and the height to the upper edge of the bumper was 27 inches. Table D.1 in Appendix D.1 gives additional dimensions and information on the vehicle. The vehicle was directed into the installation using a cable

reverse tow and guidance system and was released to be freewheeling and unrestrained just prior to impact.

Figure 8.2. Test Vehicle before Test No. 614721-01-1.

8.4. TEST DESCRIPTION

Table 8.1 lists events that occurred during Test No. 614721-01-1. Figures D.1 and D.2 in Appendix D.2 present sequential photographs during the test.

Time (s)	Events
0.0000	Vehicle impacted the installation
0.0190	Posts 10 and 11 began to move toward field side
0.0330	Vehicle began to redirect
0.0330	Post 12 began to move toward field side
0.0470	Post 9 began to rotate clockwise
0.0660	Post 13 began to rotate counterclockwise and lean toward field side
0.0740	
0.0740	Posts 14 and 15 began to rotate counterclockwise
0.0870	Rail released from posts 14 and 15
0.5080	Vehicle began to rotate clockwise behind the rail

Table 8.1. Events during Test No. 614721-01-1.

For longitudinal barriers, it is desirable for the vehicle to redirect and exit the barrier within the exit box criteria (not less than 32.8 ft downstream from loss of contact for cars and pickups). The test vehicle did not exit within the exit box criteria defined in *MASH*. Brakes on the vehicle were not applied after impact. After loss of contact with the barrier, the vehicle came to rest 51 ft downstream of the point of impact and 28 ft toward the field side of the installation.

8.5. DAMAGE TO TEST INSTALLATION

The rail released from posts 11-20 and the blockouts also released from posts 12-15.

Table 8.2 shows the post deflections after the crash test. Figure 8.3 shows the damage to the Guardrail without downstream anchorage. Working width, working width height, maximum dynamic deflection, and maximum permanent deformation were unable to be measured as the rail broke free from the end of the installation.

Post	Post Lean	Soil Gap
Anchor	-	1⁄4-inch u/s
9	-	¹⁄₄-inch t/s
10	5° f/s	1½-inch t/s; 1¼-inch f/s
11	18° f/s	2-inch f/s
12-17	69° d/s	-
18	9° f/s	-
19	36° u/s	-
20	26° u/s	-

t/s=traffic side; f/s=field side; u/s=upstream; d/s=downstream

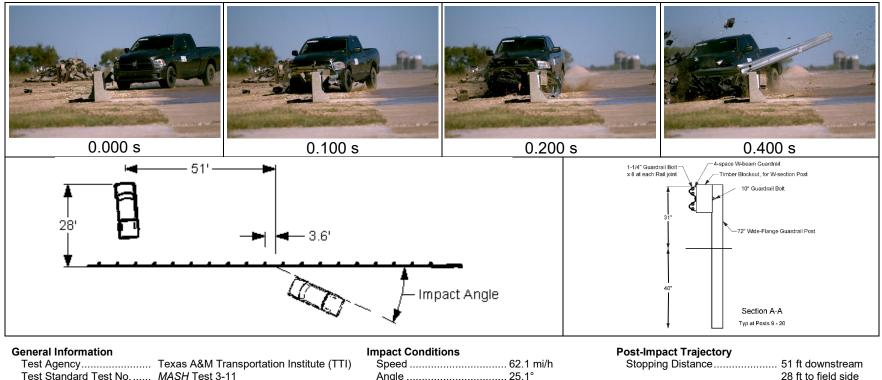
Figure 8.3. Guardrail without downstream anchorage after Test No. 614721-01-1.

8.6. DAMAGE TO TEST VEHICLE

The front bumper, hood, grill, radiator and support, right front tire and rim, right front quarter fender, right front door, right rear door, right cab corner, right rear quarter fender, right rear tire and rim, right tail light, rear bumper, left front quarter fender, left front door glass, left rear door, left rear quarter fender, left rear rim, left A-pillar, and left front and rear door frame were damaged.

Figure 8.4 shows the damage sustained by the vehicle. No fuel tank damage was observed. Maximum exterior crush to the vehicle was 10 inches in the front plane at the right front corner at bumper height. There was a 3 inch wide by 14 inch long laceration in the left rear door skin. There was no occupant compartment deformation. Figure 8.5 shows the interior of the vehicle. Tables D.2 and D.3 in Appendix D.1 provide exterior crush and occupant compartment measurements.

Figure 8.4. Test Vehicle after Test No. 614721-01-1.


Figure 8.5. Interior of Test Vehicle after Test No. 614721-01-1.

8.7. OCCUPANT RISK FACTORS

Data from the accelerometers were digitized for evaluation of occupant risk, and the results are shown in Table 8.3. Figure D.3 in Appendix D.3 shows the vehicle angular displacements, and Figures D.4 through D.6 in Appendix D.4 show acceleration versus time traces. Figure 8.6 summarizes pertinent information from the test.

Occupant Risk Factor	Value	Time
Occupant Impact Velocity (OIV)		
	15.1	
Longitudinal	ft/s	0.1714 seconds on right side of
	10.7	interior
Lateral	ft/s	
Occupant Ridedown Accelerations		
Longitudinal	8.1 g	0.5335 - 0.5435 seconds
Lateral	5.4 g	0.2190 - 0.2290 seconds
Theoretical Head Impact Velocity	5.4 m/s	0.1624 seconds on right side of
(THIV)	5.4 11/5	interior
Acceleration Severity Index (ASI)	0.5	0.0667 - 0.1167 seconds
Maximum 50-ms Moving Average		
Longitudinal	-5.9 g	0.4993 - 0.5493 seconds
Lateral	-3.5 g	0.0381 - 0.0881 seconds
Vertical	1.9 g	0.3279 - 0.3779 seconds
Maximum Yaw, Pitch, and Roll Angles		
Roll	12°	0.6911 seconds
Pitch	3°	1.0549 seconds
Yaw	36°	2.0000 seconds

Table 8.3. Occupant Risk Factors for Test No. 614721-01-1.

General Information		Impact Conditions	Post-Impact Trajectory	
Test Agency	Texas A&M Transportation Institute (TTI)	Speed 62.1 mi/h	Stopping Distance	51 ft downstrea
Test Standard Test No	MASH Test 3-11	Angle		28 ft to field side
TTI Test No	614721-01-1	Location/Orientation 42.9 inches	Vehicle Stability	
Test Date	2022-10-26	upstream from the	Maximum Roll Angle	12°
Test Article		centerline of post 11	Maximum Pitch Angle	
Туре	Longitudinal Barrier—Guardrail	Impact Severity 116.9 kip-ft	Maximum Yaw Angle	36°
Name	Guardrail without downstream anchorage	Exit Conditions	Vehicle Snagging	No
Installation Length	125 ft-91/2 inches	Speed Not measurable	Vehicle Pocketing	
Material or Key Elements	W-beam rail element mounted at	Trajectory/Heading Angle Not measurable	Test Article Deflections	
-	31 inches on 72-inch long wide flange	Occupant Risk Values	Dynamic	Not measurable
	steel guardrail posts without downstream	Longitudinal OIV 15.1 ft/s	Permanent	
	anchoragel	Lateral OIV 10.7 ft/s	Working Width	Not measurable
Soil Type and Condition	Crushed concrete, dry	Longitudinal Ridedown 8.1 g	Height of Working Width	Not measurable
Test Vehicle	-	Lateral Ridedown 5.4 g	Vehicle Damage	
Type/Designation	2270P	THIV 5.4 m/s	VDS	01RFQ4
Make and Model	2016 RAM 1500	ASI0.5	CDC	01FREW3
Curb	4947 lb	Max. 0.050-s Average	Max. Exterior Deformation	10 inches
Test Inertial	5041 lb	Longitudinal	Max. Occupant Compartment	
Dummy	N/A	Lateral	Deformation	None
Gross Static	5041 lb	Vertical1.9 g		

Figure 8.6. Summary of Results for MASH Test 3-11 on Guardrail without downstream anchorage.

CHAPTER 9. SUMMARY AND CONCLUSIONS

9.1. ASSESSMENT OF TEST RESULTS

The crash tests reported herein were performed in accordance with *MASH* 3-11 criteria on the Guardrail without downstream anchorage. Table 9.1 provides an assessment of each test based on the applicable 3-11 safety evaluation criteria for *MASH* TL-3 longitudinal barriers.

Evaluation Criteria	Description	Test No. 614721-01-1	Test No. 614721-01-2
A	Contain, Redirect, or Controlled Stop	Fail	Fail
D	No Penetration into Occupant Compartment	S	S
F	Roll and Pitch Limit	S	S
н	OIV Threshold	S	S
I	Ridedown Threshold	S	S
Ov	verall	Fail	Fail

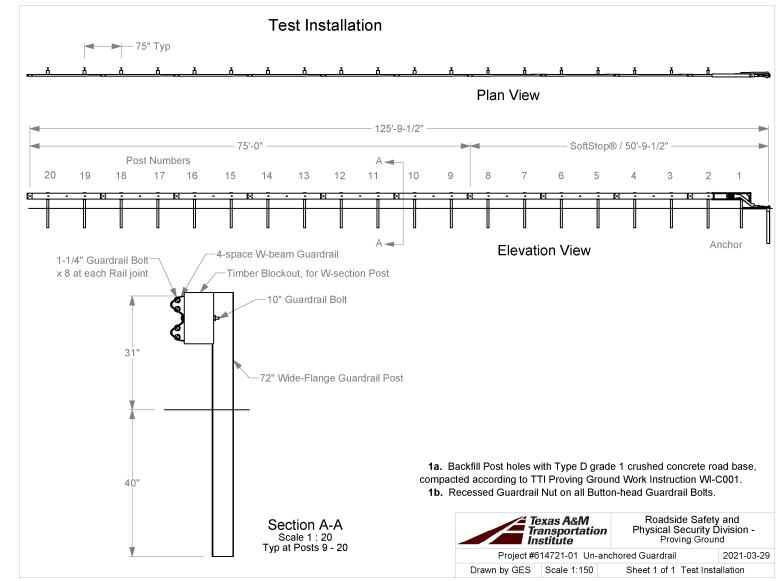
Table 9.1. Assessment Summary for MASH TL-3 Tests on the Guardrail without downstream anchorage.

Note: S = Satisfactory; N/A = Not Applicable.

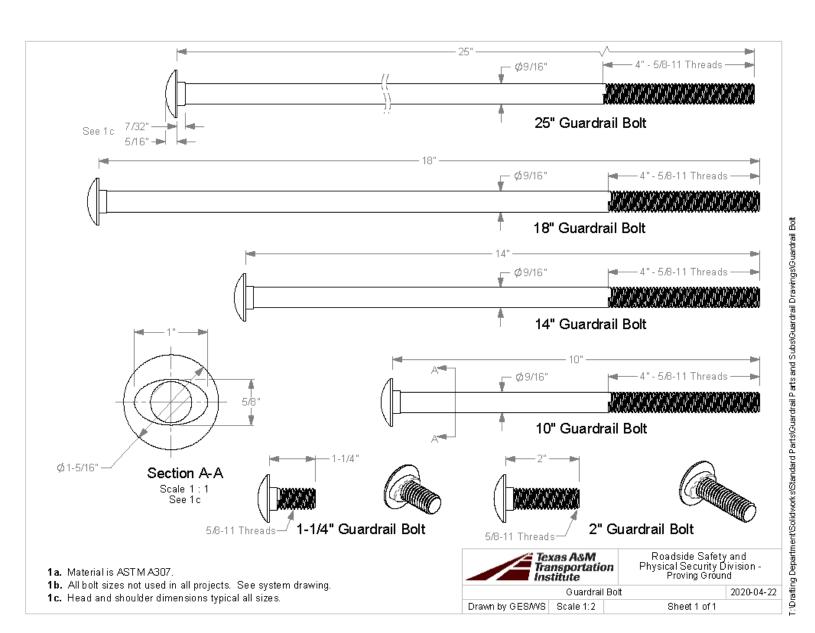
¹See Table 4.2 for details

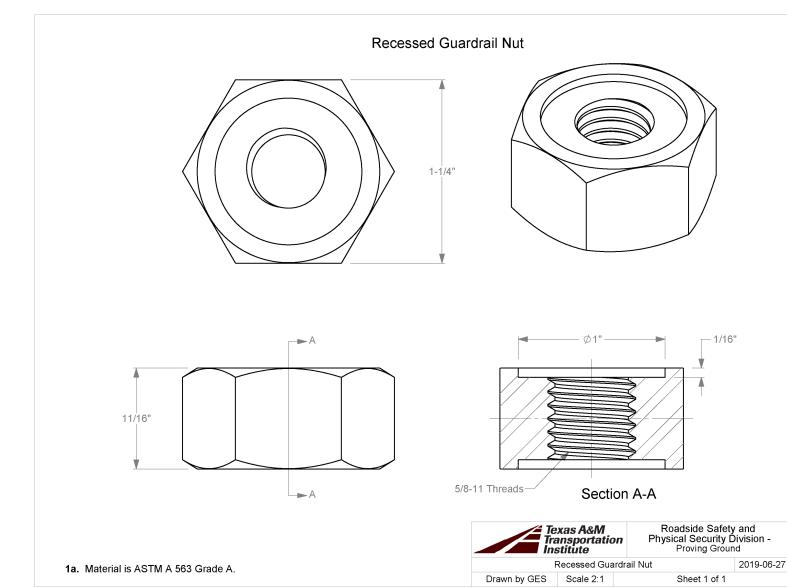
9.2. CONCLUSIONS

The research team performed numerous computer simulations to determine the minimum required length-of-need for MGS without downstream anchorage. Despite promising computer simulations, the physical crash testing did not exhibit the desired redirective capability with The system failing to meet the *MASH* test 3-11 performance criteria. Therefore, additional research is need to provide a redirective solution for state DOT implementation.

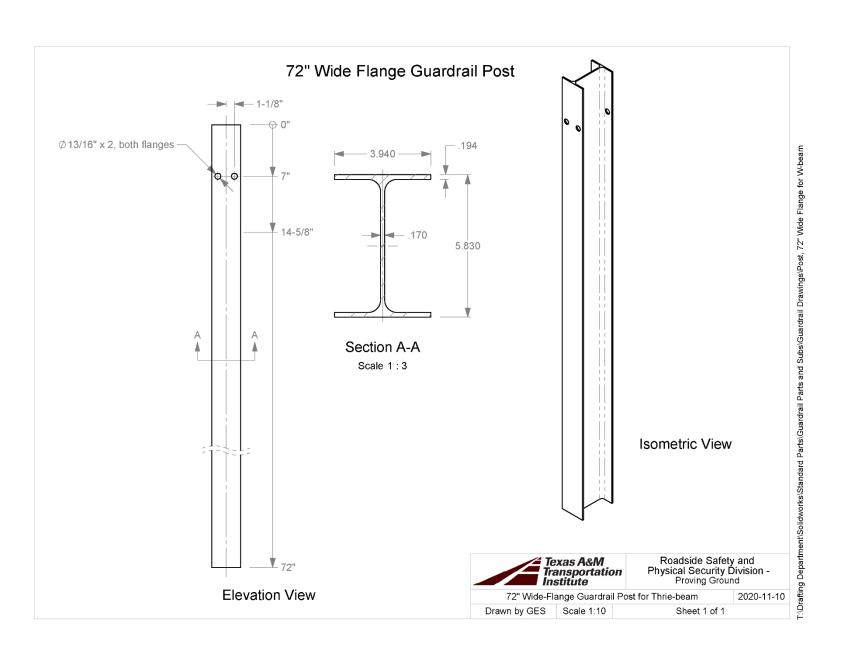

The researchers have recommend additional calibration of the simulation models in order to better predict the interaction of the guardrail bolt and the w-beam rail. This may include component testing, such as pendulum or surrogate vehicle dynamic evaluation efforts. Following the calibration effort, researchers would complete a parametric study to determine the minimum length-of-need for guardrail without anchorage. This may involve the inclusion of additional hardware, such as guardrail washers, to improve connectivity between the downstream posts and the w-beam rails. Lastly, *MASH* TL-3 physical crash testing will be required.

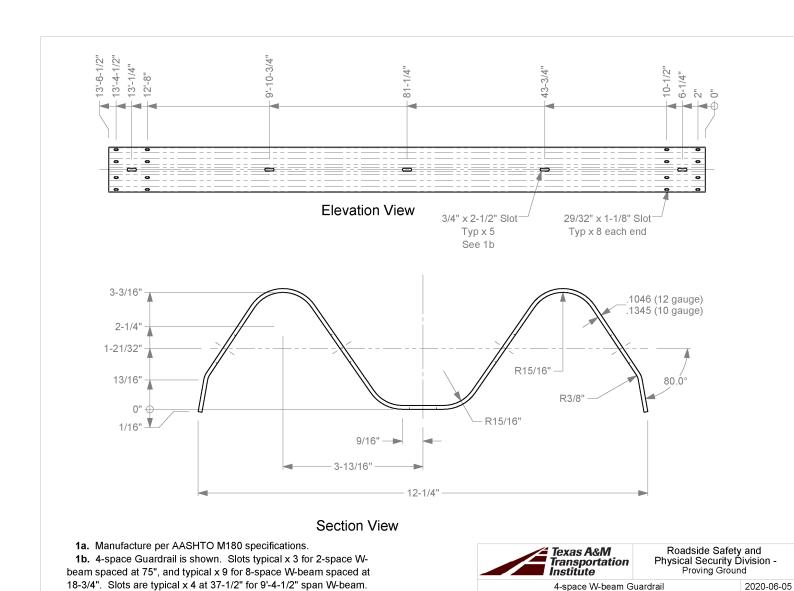
REFERENCES


1. AASHTO. *Manual for Assessing Roadside Safety Hardware, Second Edition.* American Association of State Highway and Transportation Officials: Washington, DC, 2016.

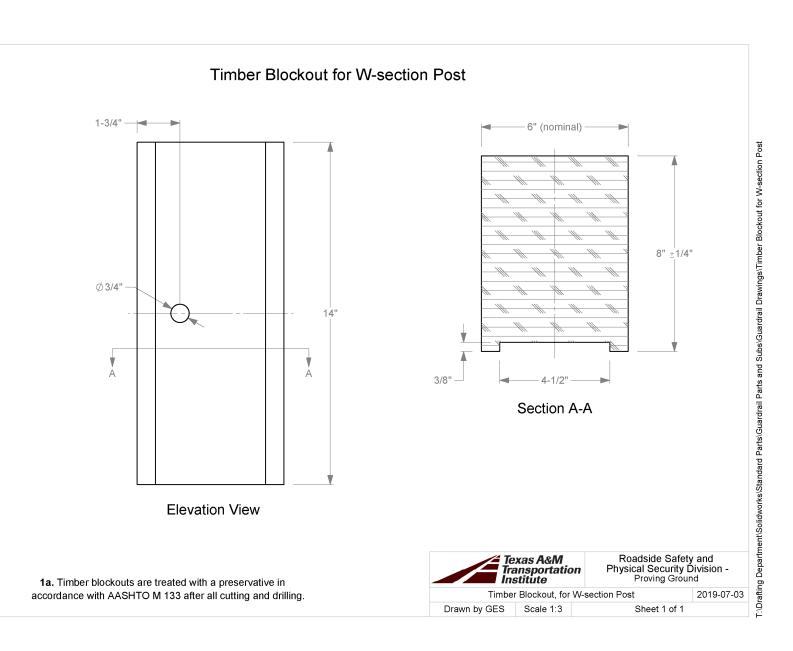

APPENDIX A. DETAILS OF THE GUARDRAIL WITHOUT DOWNSTREAM ANCHORAGE

A.1. DETAILS OF THE GUARDRAIL WITHOUT DOWNSTREAM ANCHORAGE FOR TEST 614721-01-2

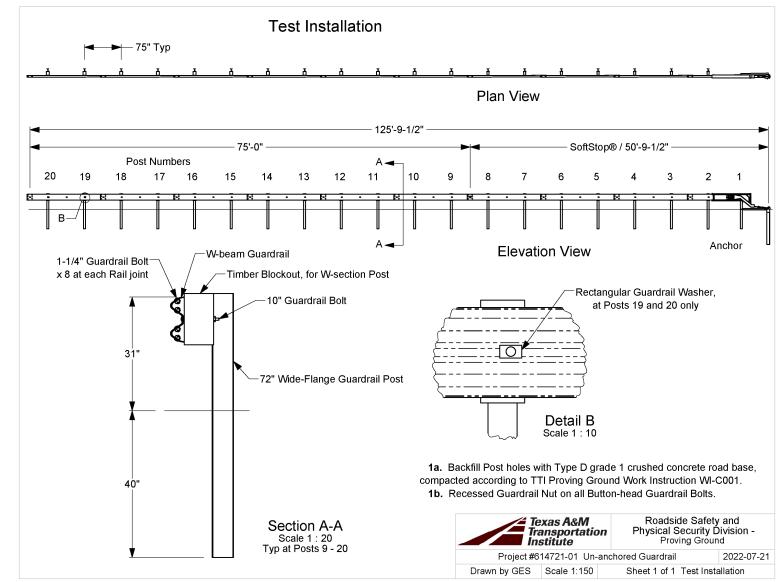



Q:\Accreditation-17025-2017\EIR-000 Project Files\614721-01 - Un-anchored Guardrail - Kovar\Drafting, 614721-01\614721-01 Drawing

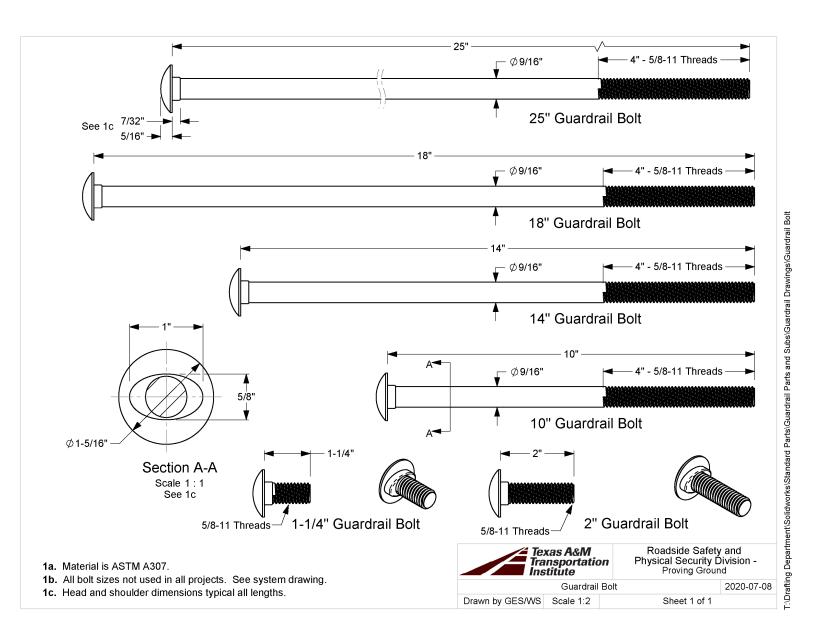
176

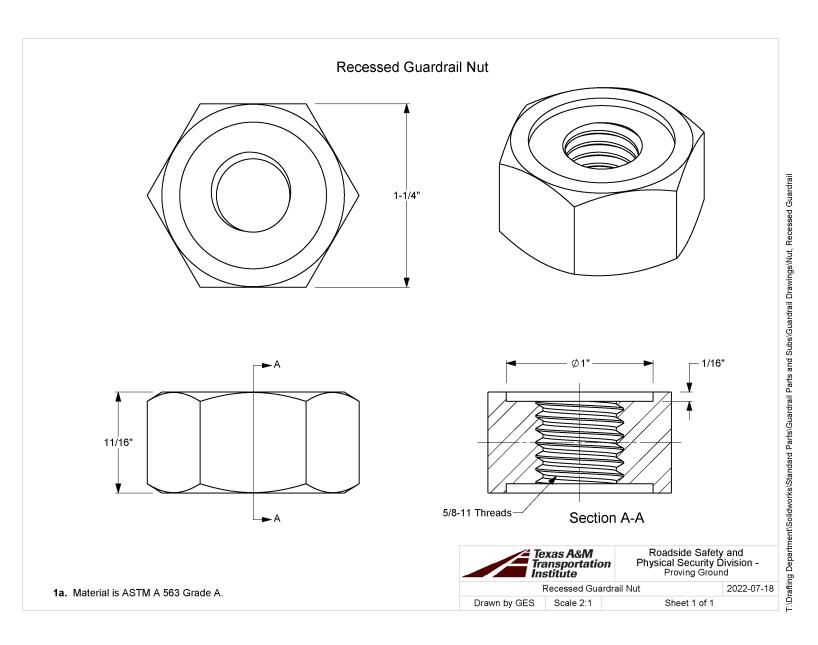


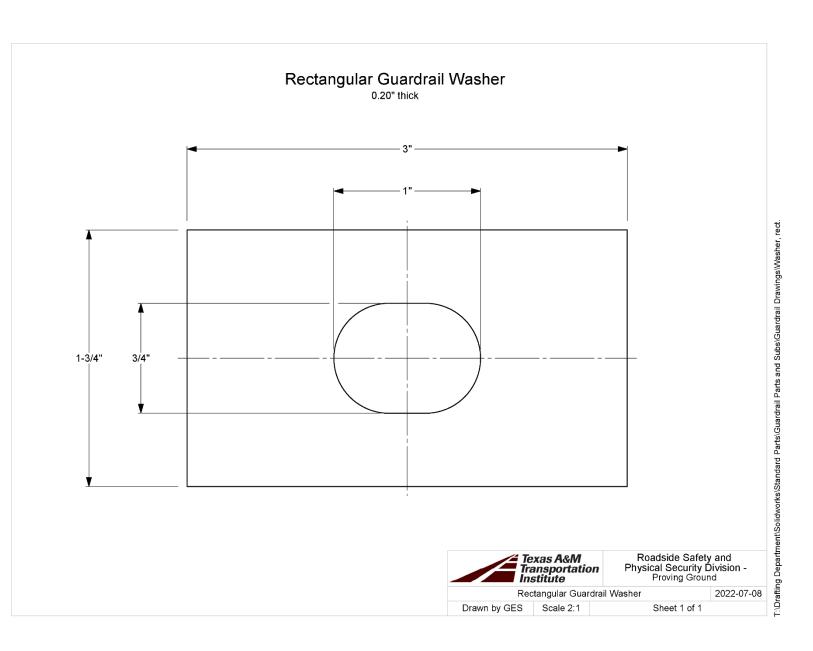
Drawn by GES

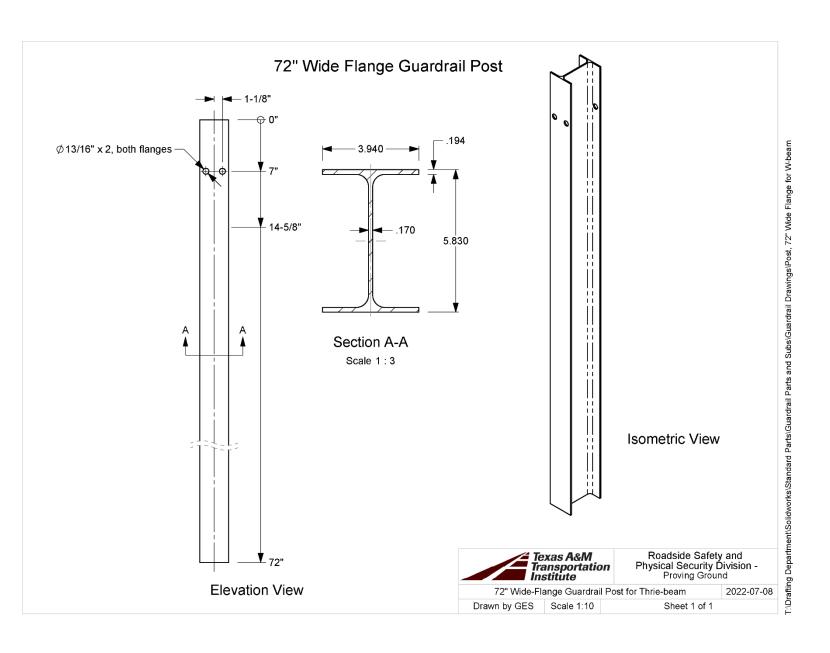

Scale 1:20

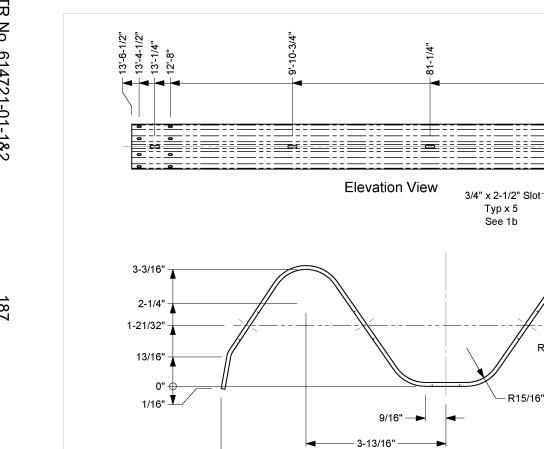
Sheet 1 of 1


T\Drafting Department\Solidworks\Standard Parts\Guardrail Parts and Subs\Guardrail Drawings\W-Beam Guardrail




A.2. DETAILS OF THE GUARDRAIL WITHOUT DOWNSTREAM ANCHORAGE FOR TEST 614721-01-1


Q: Accreditation-17025-2017/EIR-000 Project Files/614721-01 - Un-anchored Guardrail - Kovar/01-1/Drafting, 614721-01-1/2022-07-21/614721-01-1 Drawing



185

186

12-1/4"

43-3/4"

R15/16"

Drawn by GES

R3/8"

Texas A&M Transportation Institute

Scale 1:20

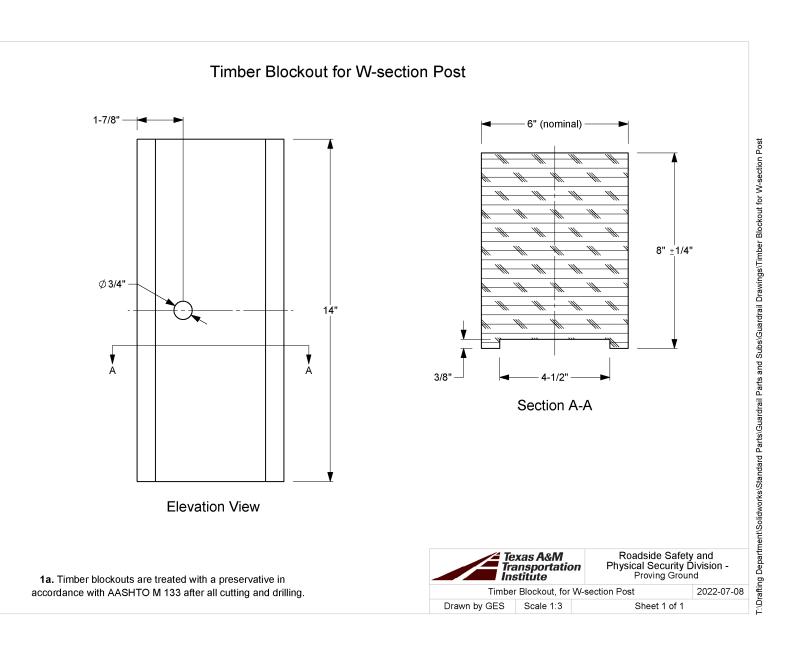
W-beam Guardrail

29/32" x 1-1/8" Slot Typ x 8 each end

10-1/2" 6-1/4"

_.1046 (12 gauge) .1345 (10 gauge)

80.Ó°


Roadside Safety and Physical Security Division -Proving Ground

Sheet 1 of 1

° "

1a. Manufacture per AASHTO M180 specifications. 1b. 4-space Guardrail is shown. Slots typical x 3 for 2-space Wbeam spaced at 75", and typical x 9 for 8-space W-beam spaced at 18-3/4". Slots are typical x 4 at 37-1/2" for 9'-4-1/2" span W-beam.

APPENDIX B. SUPPORTING CERTIFICATION DOCUMENTS

TRN	
No.	
614721-01-1&2	
72	
1-0	
<u>_</u>	
&2	

Certified Analysis

Trinity Higl	way Products LLC			
2548 N.E.	28th St.	Order Number: 1343950	Prod Ln Grp: 19-CASS	
Ft Worth (T	HP), TX 76111 Phn:(817) 665-1499	Customer PO: 614031		As of: 11/2/21
Customer:	SAMPLES, TESTING MATERIALS	BOL Number: 85823	Ship Date:	
	15601 Dallas Pkwy	Document #: 1		
	Suite 525	Shipped To: TX		
	ADDISON, TX 75001	Use State: TX		
Project:	TTI TESTING THRIE BEAM AT FIXED OBJECT			, 1997 B. 1997

С S Si Cu Cb Cr Vn ACW CL TY Heat Code/ Heat Yield TS Elg Mn Р Spec Qty Part # Description 11G 12/12'6/3'1.5/S 2 F12721 24 27.0 0.240 1.000 0.011 0.001 0.020 0.150 0.002 0.060 0.004 4 80,800 M-180 Α 2 2113321 52,900 26.0 0.230 1.000 0.010 0.002 0.030 0.140 0.002 0.060 0.004 4 80,500 M-180 2 2113322 56,700 A 26.0 0.230 0.980 0.010 0.001 0.030 0.120 0.002 0.060 0.005 4 M-180 2 2213517 55,100 79,900 A 26.0 0.230 0.980 0.011 0.001 0.020 0.120 0.001 0.070 0.004 4 57,000 84,200 2213518 M-180 A 2 11G 2 F13521 21.0 0.220 0.810 0.010 0.003 0.030 0.150 0.001 0.050 0.002 4 82,800 2112289 58,300 M-180 A 2 $22.0 \quad 0.220 \quad 0.810 \quad 0.011 \ 0.003 \quad 0.020 \quad 0.150 \quad 0.001 \ 0.050 \quad 0.002 \quad 4$ 2112291 59,700 81,900 M-180 A 2 11G 2 F13621 22.0 0.220 0.810 0.011 0.003 0.020 0.150 0.001 0.050 0.002 4 81,900 M-180 2 2112291 59,700 A 20.0 0.220 0.810 0.011 0.003 0.020 0.140 0.002 0.050 0.002 4 M-180 Α 2 2112293 61,700 85,500 24.0 0.210 0.810 0.012 0.002 0.030 0.140 0.000 0.050 0.002 4 2 62,000 83,600 A 2112297 M-180 28.0 0.070 0.800 0.008 0.019 0.200 0.090 0.014 0.040 0.002 4 67,300 50 533G 6'0 POST/8.5/DDR/7 A-36 1111517 54,400 $28.3 \hspace{0.1in} 0.070 \hspace{0.1in} 0.840 \hspace{0.1in} 0.007 \hspace{0.1in} 0.022 \hspace{0.1in} 0.230 \hspace{0.1in} 0.130 \hspace{0.1in} 0.015 \hspace{0.1in} 0.040 \hspace{0.1in} 0.002 \hspace{0.1in} 4$ 54,500 67,500 A-36 1114803 533G $26.0 \ 0.070 \ 80.000 \ 0.013 \ 0.020 \ 0.200 \ 0.100 \ 0.014 \ 0.040 \ 0.002 \ 4$ 2104723 54,000 66,200 533G A-36 4 2 700A 3/16X12.5X16 CAB ANC BRKT WIRE 17044592 31.0 0.160 0.830 0.010 0.005 0.007 0.025 0.002 0.025 0.001 4 45,600 67,500 700A A-36 821P12700 4 CBL 3/4X6'6/DBL SWG/NOHWD WIRE SO03-005338 4 3000G 450 3340G 5/8" GR HEX NUT FAST 21-38-003 968936-5 4 400 3360G 5/8"X1.25" GR BOLT A307-3360G 1 of 3

								Certifie	a Analy	y SIS							Trink		y Produc	.F
			lucts LLC																	
548 N	E. 28th	St.						Order N	Number: 13439	50 Pro	od Ln Gr	p: 19	-CASS							
rt Worth	(THP)	TX 7	'6111 Phn:(817) 665-1499					Custor	mer PO: 614031							A	sof: 1	1/2/21		
Custom	er: SA	MPL	ES, TESTING MATERIA	LS				BOLN	Number: 85823		Ship I	Date:								
	15	501 D	allas Pkwy					Docu	ment #: 1											
	Su	ite 52.	5					Ship	ped To: TX							INTER UND	A MINI AND IN	IN COMPANY		
	AL	DISO	N, TX 75001					Us	e State: TX											
Project:			ESTING THRIE BEAM A	TEIX	RD OB	IEC	т												H	
Toject.		11 11	ESTING TINE DEAM A				1	Q505-04	505				<u>27 14</u>							
Q			Description		Spec		L TY	Heat Code/ Heat	Yield	TS	Elg	С	Mn	P S	S Si	Cu	Сь	Cr	Vn A	
5	0 350)G 5	5/8"X10" GR BOLT A307	A:	307-3500	G		958524-6												4
	8 390)G 1	" ROUND WASHER F844	F	844-390	0		5053124												4
	8 391)G 1	" HEX NUT A563	A	563-391	0		P39590 R75013												4
5	0 407	SB V	WD BLK RTD 6X8X14		WOOD			4850												
	4 1222	7G 1	F12/12'6/3'1.5:6@1'6.75/S					F10621												
	4 2020	7G 1	2/9'4.5/8-HOLE ANCH/S	M-180		A	2	2106282 F12821	64,100	86,000	23.0	0.210	0.760	0.008 0.00	0.030	0.080	0.002	0.040	0.003	4
				M-180		A	2	2113322	56,700	80,500	26.0	0.230	1.000	0.010 0.00	2 0.030	0.140	0.002	0.060	0.004	4
				M-180		A	2	2113955	55,900	82,400	25.0	0.230	0.970	0.010 0.00	0.030	0.110	0.002	0.050	0.004	4
				M-180		A	2	2213518	57,000	84,200		0.230		0.011 0.00					0.004	
				M-180		A	2	2215927	57,100	80,900		0.210		0.010 0.00					0.004	
				M-180		A	2	2215929	58,600	80,900	27.0			0.009 0.00					0.004	
				M-180		A	2	264922	60,406	79,043	24.0			0.008 0.00					0.001	
	2 3221	8G 1	10/TRAN/TB:WB/ASYM/RT	M-180	M-180	A B	2 2	267328 C89858	62,895 59,300	81,187 81,600	25.1 24.2			0.006 0.00						
						1				•										
	3221	8G			M-180	В	2	C89858	59,300	81,600	24.2	0.200	0.490	0.014 0.003	2 0.030	0.090	0.000	0.060	0.001	4
	2 3221	9G 1	10/TRAN/TB:WB/ASYM/LT		M-180	В	2	248834	59,940	78,890	27.2	0.210	0.720	0.013 0.00	3 0.020	0.100	0.000	0.050	0.000	4
	3221	9G			M-180	в	2	267473	59,260	78,979	25.5	0.190	0.710	0.014 0.002	2 0.020	0.100	0.000	0.080	0.001	4

Certified Analysis

Order Number: 1343952

Customer PO: 614721

BOL Number: 85824

Document #: 1

Shipped To: TX

Use State: TX

Prod Ln Grp: 19-CASS

Ship Date:

Asof: 11/2/21

Project: TTI TESTING UNANCHORED RAIL

Trinity Highway Products LLC

Ft Worth (THP), TX 76111 Phn:(817) 665-1499

15601 Dallas Pkwy

ADDISON, TX 75001

Suite 525

Customer: SAMPLES, TESTING MATERIALS

2548 N.E. 28th St.

Qty		Description	S	pec	CL	TY Heat Code/ Heat	Yield	TS	Elg	С	Mn	Р	s	SI	Cu	Cb	Cr	Vn	ACW
18	11G	12/12'6/3'1.5/S				2 F12721													
			M-180	Α	2	2113321	52,900	80,800	27.0	0.240	1.000	0.011	0.001	0.020	0.150	0.00	2 0.060	0.004	4
			M-180	A	2	2113322	56,700	80,500	26.0	0.230	1.000	0.010	0.002	0.030	0.140	0.00	2 0.060	0.004	4
			M-180	A	2	2213517	55,100	79,900	26.0	0.230	0.980	0.010	0.001	0.030	0.120	0.00	2 0.060	0.005	4
			M-180	A	_	2213518	57,000	84,200	26.0	0.230	0.980	0.011	0.001	0.020	0.120	0.00	1 0.070	0.004	4
	11G					2 F13521													
			M-180		2	2112289	58,300	82,800	21.0	0.220	0.810	0.010	0.003	0.030	0.150	0.00	1 0.050	0.002	4
	11G		M-180	A	2	2112291	59,700	81,900	22.0	0.220	0.810	0.011	0.003	0.020	0.150	0.00	1 0.050	0.002	4
	110		24.100			2 F13621													
			M-180		2	2112291	59,700	81,900		0.220								0.002	
			M-180 M-180		2	2112293	61,700	85,500		0.220								0.002	
36	533G	6'0 POST/8.5/DDR/7		A-36	2	2112297 1111517	62,000 54,400	83,600		0.210									
			1	1-50		1111517	34,400	67,300	28.0	0.070	0.800	0.008	0.019	0.200	0.090	0.014	0.040	0.002	4
	533G		А	-36		1114803	54,500	67,500	28.3	0.070	0.840 (0.007	0.022	0.230	0.130	0.015	0.040	0.002	4
														01400		01010	0.010	0.002	-
	533G		A	-36		2104723	54,000	66,200	26.0	0.070 8	0.000 (0.013	0.020	0.200	0.100	0.014	0.040	0.002	4
180	3340G	5/8" GR HEX NUT																	
180	33400	5/8" GK HEX NUT	F	AST		21-38-003													4
144	3360G	5/8"X1.25" GR BOLT	A307	-3360G		968936-5													
						,00,00 0													4
36	3500G	5/8"X10" GR BOLT A307	A307	-3500G		958524-6													4
36	4076B	WD BLK RTD 6X8X14	WC	OOD		4850													

1 of 2

rinity Highway Products LLC 548 N.E. 28th St. Worth (THP), TX 76111 Phn:(817) 665-1499 ustomer: SAMPLES, TESTING MATERIALS 15601 Dallas Pkwy Suite 525 ADDISON, TX 75001 roject: TTI TESTING UNANCHORED RAIL LL STEEL USED WAS MELTED AND MANUFACTURED IN USA A LL GUARDRAIL MEETS AASHTO M-180, ALL STRUCTURAJ LL COATINGS PROCESSES OF THE STEEL OR IRON ARE PH	Order Number: 1343952 Customer PO: 614721 BOL Number: 85824 Document #: 1 Shipped To: TX Use State: TX	Prod Ln Grp: 19-CASS Ship Date:	As of: 11/2/21
Worth (THP), TX 76111 Phn:(817) 665-1499 ustomer: SAMPLES, TESTING MATERIALS 15601 Dallas Pkwy Suite 525 ADDISON, TX 75001 roject: TTI TESTING UNANCHORED RAIL LL STEEL USED WAS MELTED AND MANUFACTURED IN USA A LL GUARDRAIL MEETS AASHTO M-180, ALL STRUCTURAI	Customer PO: 614721 BOL Number: 85824 Document #: 1 Shipped To: TX		As of: 11/2/21
ustomer: SAMPLES, TESTING MATERIALS 15601 Dallas Pkwy Suite 525 ADDISON, TX 75001 roject: TTI TESTING UNANCHORED RAIL LL STEEL USED WAS MELTED AND MANUFACTURED IN USA A LL GUARDRAIL MEETS AASHTO M-180, ALL STRUCTURAI	BOL Number: 85824 Document #: 1 Shipped To: TX	Ship Date:	As of: 11/2/21
15601 Dallas Pkwy Suite 525 ADDISON, TX 75001 roject: TTI TESTING UNANCHORED RAIL LL STEEL USED WAS MELTED AND MANUFACTURED IN USA A LL GUARDRAIL MEETS AASHTO M-180, ALL STRUCTURAI	Document #: 1 Shipped To: TX	Ship Date:	
Suite 525 ADDISON, TX 75001 roject: TTI TESTING UNANCHORED RAIL LL STEEL USED WAS MELTED AND MANUFACTURED IN USA A LL GUARDRAIL MEETS AASHTO M-180, ALL STRUCTURAI	Shipped To: TX		
ADDISON, TX 75001 roject: TTI TESTING UNANCHORED RAIL LL STEEL USED WAS MELTED AND MANUFACTURED IN USA A LL GUARDRAIL MEETS AASHTO M-180, ALL STRUCTURAI			
oject: TTI TESTING UNANCHORED RAIL LL STEEL USED WAS MELTED AND MANUFACTURED IN USA A LL GUARDRAIL MEETS AASHTO M-180, ALL STRUCTURAI	Use State: TX		
LL STEEL USED WAS MELTED AND MANUFACTURED IN USA A LL GUARDRAIL MEETS AASHTO M-180, ALL STRUCTURAI			
LL GUARDRAIL MEETS AASHTO M-180, ALL STRUCTURA			
LL GALVANIZED MATERIAL CONFORMS WITH ASTM A-123 & INISHED GOOD PART NUMBERS ENDING IN SUFFIX B,P, O OLTS COMPLY WITH ASTM A-307 SPECIFICATIONS AND A UTS COMPLY WITH ASTM A-563 SPECIFICATIONS AND AI (ASHERS COMPLY WITH ASTM F-436 SPECIFICATION AND/OR F- THERWISE STATED. 4" DIA CABLE 6X19 ZINC COATED SWAGED END AISI C-1035 ST FRENGTH – 46000 LB ate of Texas, County of Tarrant. Sworn and subscribed before me this 2nd otary Public: otary Public: Miguel Jimenez Jr My Commission Expires: / Miguel Jimenez Jr My Commission Expires: Notary ID 133343176 Miguel Jimenez Jr My Commission Expires Notary ID 133343176	OR S, ARE UNCOATED ARE GALVANIZED IN ACCORDANC RE GALVANIZED IN ACCORDANCE 2-844 AND ARE GALVANIZED IN ACCOR TEEL ANNEALED STUD 1" DIA ASTM4	E WITH ASTM A-153, UNLESS WITH ASTM A-153, UNLESS O RDANCE WITH ASTM F-2329, UNI	Trinity Lighway Products LLC By:

193

TR No. 614721-01-1&2

Certified Analysis

Order Number: 1343951 Prod Ln Grp: 19-CASS Customer PO: NCHRP 350
BOL Number: 85825 Ship Date:
Document #: 1
Shipped To: TX
Use State: TX

As of: 11/2/21

Project: TTI TESTING NCHRP PROJECT

Ft Worth (THP), TX 76111 Phn:(817) 665-1499

15601 Dallas Pkwy Suite 525

ADDISON, TX 75001

Customer: SAMPLES, TESTING MATERIALS

Trinity Highway Products LLC

2548 N.E. 28th St.

28 11G 12/12/6/3°1.5/S 2 F12721 M-180 A 2 2113321 52,900 80,800 27.0 0.240 1.000 0.011 0.002 0.150 0.002 0.060 0. M-180 A 2 2113322 56,700 80,500 26.0 0.230 0.140 0.020 0.030 0.140 0.002 0.030 0.100 0.030 0.020 0.060 0. M-180 A 2 2213518 57,000 84,200 2.60 0.230 0.980 0.011<0.001 0.020 0.020 0.001 0.030 0.030 0.150 0.001 0.020 0.001 0.030 0.30 0.150 0.001 0.020 0.010 0.030 0.030 0.150 0.001 0.030 0.030 0.150 0.011 0.030 0.020 0.010 0.030 0.030 0.100 0.030 0.030 0.150 0.011 0.030 0.020 0.50 0.010 0.010 0.010 0.010 0.030 0.020 0.50 0.020 0.50 0	n ACW
M-180 A 2 2113322 56,700 80,900 2.60 0.230 0.100 0.020 0.00	
M-180 A 2 212121 55,100 79,900 26.6 0.230 0.100 0.001 0.002 0.001 0.001 0.002 0.001	04 4
M-180 A 2 2213518 57,000 84,200 26.0 0.230 0.980 0.011 0.000 0.020 0.120 0.001 0.070 0.01 11G M-180 A 2 2112289 58,300 82,800 21.0 0.220 0.810 0.011 0.003 0.020 0.120 0.001 0.070 0.001 11G M-180 A 2 2112291 59,700 81,900 22.0 0.810 0.011<0.003	04 4
11G 2 F13521 11G 11G <td>05 4</td>	05 4
11G M-180 A 2 2112291 58,300 82,800 21.0 0.220 0.810 0.011 0.030 0.150 0.001 0.050 0.001 0.050 0.001 0.050 0.001 0.050 0.011 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000<	04 4
11G M-180 A 2 2112291 59,700 81,900 22.0 0.220 0.810 0.011 0.003 0.020 0.150 0.001 0.050 0.001 0.050 0.001 0.050 0.001 0.050 0.001 0.050 0.011 0.001 0.020 0.150 0.001 0.050 0.01 0.020 0.150 0.001 0.050 0.001 0.050 0.001 0.050 0.001 0.050 0.011 0.002 0.150 0.001 0.050 0.01 0.001 0.020 0.150 0.001 0.050 0.01 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 <td></td>	
11G 2 F13621 59,000 81,900 22.0 0.220 0.810 0.011 0.003 0.020 0.150 0.001 0.000 0.001 0.000 0.000 0.001 0.000 0.011 0.000 0.001 0.000 0.014 0.000 0.001 0.000 0.014 0.000 0.015 0.001 0.00 0.015 0.001 0.005 0.015 0.00	02 4
M-180 A 2 2112291 59,700 81,900 22.0 0.220 0.810 0.011 0.003 0.020 0.150 0.001 0.002 0.030 0.140 0.002 0.030 0.140 0.002 0.050 0.140 0.002 0.050 0.140 0.002 0.050 0.140 0.002 0.050 0.140 0.002 0.050 0.140 0.002 0.050 0.140 0.002 0.050 0.140 0.002 0.050 0.140 0.002 0.050 0.140 0.000 0.050 0.140 0.002 0.050 0.140 0.002 0.050 0.140 0.000 0.050 0.140 0.000 0.050 0.140 0.000 0.050 0.140 0.000 0.050 0.140 0.000 0.050 0.140 0.000 0.050 0.140 0.000 0.050 0.140 0.000 0.050 0.140 0.000 0.050 0.140 0.000 0.050 0.140 0.000 0.014 0.000 0.014 0.000 0.014 0.000 0.014 0.000 0.014 0.01	02 4
M-180 A 2 2112293 61,700 85,500 20.0 0.220 0.810 0.011 0.002 0.000 0.014 0.000 0.000 0.014 0.000 0.050 0.01 50 533G 60 POST/8.5/DDR/7 A-36 1111517 54,400 67,300 28.0 0.070 0.800 0.008 0.019 0.200 0.009 0.014 0.000 0.050 0.01 533G 60 POST/8.5/DDR/7 A-36 1114803 54,500 67,300 28.0 0.070 0.800 0.009 0.014 0.000 0.050 0.040 0.00 533G A-36 1114803 54,500 67,500 28.3 0.070 0.800 0.009 0.014 0.040 0.00 533G A-36 2104723 54,000 66,200 26.0 0.070 0.800 0.013 0.020 0.020 0.020 0.020 0.040 0.00 2 700A 3/16X12.5X16 CAB ANC BRKT WIRE 17044592 7004 A-36 821P12700 45,600 67,500 31.0	
M-180 A 2 2112297 62,000 83,600 24.0 0.210 0.810 0.012 0.002 0.030 0.140 0.000 0.050 0.14 0.000 0.050 0.14 0.000 0.050 0.14 0.000 0.010 0.010 0.012 0.020 0.030 0.140 0.000 0.050 0.14 0.000 0.050 0.14 0.000 0.050 0.14 0.000 0.050 0.14 0.000 0.050 0.14 0.000 0.050 0.14 0.000 0.050 0.14 0.000 0.050 0.14 0.040 0.00 533G 60 POST/8.5/DDR/7 A-36 1114803 54,500 67,500 28.3 0.070 0.840 0.007 0.022 0.230 0.14 0.040 0.0 533G A-36 2104723 54,000 66,200 26.0 0.070 80.000 0.013 0.20 0.007 0.025 0.002 0.025 0.002 0.025 0.002 0.025 0.002 0.025 0.002 0.025 0.002 0.025 0.002 <td>02 4</td>	02 4
50 533G 60 POST/8.5/DDR/7 A-36 1111517 54,400 67,300 28.0 0.070 0.800 0.008 0.019 0.200 0.001 0.000 0.015 0.000 0.015 0.000 0.010 0.015 0.000 0.014 0.000 0.000 0.014 0.000 0.014 0.000 0.014 0.000 0.015 0.000 0.014 0.000 0.014 0.000 0.015 0.000 0.014 0.000 0.014 0.000 0.014 0.000 0.014 0.000 0.015 0.040 0.00 533G A-36 1114803 54,500 67,500 28.3 0.070 0.840 0.007 0.022 0.200 0.100 0.014 0.040 0.00 533G A-36 2104723 54,000 66,200 26.0 0.070 80.000 0.013 0.020 0.025 0.002 0.025 0.002 0.025 0.002 0.025 0.002 0.025 0.002 0.025 0.002 0.025 0.002 0.025 0.002 0.025 0.025 0.025	02 4
533G A-36 1114803 54,500 67,500 28.3 0.070 0.022 0.230 0.130 0.015 0.040 0.00 533G A-36 2104723 54,000 66,200 26.0 0.070 80.000 0.013 0.020 0.100 0.014 0.040 0.00 2 700A 3/16X12.5X16 CAB ANC BRKT WIRE 17044592 700A A-36 821P12700 45,600 67,500 31.0 0.160 0.830 0.007 0.025 0.002 <td>02 4</td>	02 4
533G A-36 2104723 54,000 66,200 26.0 0.070 80.000 0.012 0.220 0.100 0.014 0.040 0.0 2 700A 3/16X12.5X16 CAB ANC BRKT WIRE 17044592 700A A-36 821P12700 45,600 67,500 31.0 0.160 0.830 0.007 0.025 0.002 0.025 0.002 4 3000G CBL 3/4X6'6/DBL SWG/NOHWD WIRE SO03-005338 500 5750 31.0 0.160 0.830 0.010 0.025 0.002 0.025 0.002 224 3360G 5/8"X1.25" GR BOLT A307-3360G 968936-5 500 <)2 4
533G A-36 2104723 54,000 66,200 26.0 0.070 80.00 0.010 0.014 0.040 0.0 2 700A 3/16X12.5X16 CAB ANC BRKT WIRE 17044592 700A A-36 821P12700 45,600 67,500 31.0 0.160 0.830 0.007 0.025 0.002 0.025 0.002 0.025 0.002 0.025 0.002 0.025 0.002 0.025 0.002 0.010 0.014 0.040 0.0 4 3000G CBL 3/4X6'6/DBL SWG/NOHWD WIRE SO03-005338	2 4
2 700A 3/16X12.5X16 CAB ANC BRKT WIRE 17044592 700A A-36 821P12700 45,600 67,500 31.0 0.160 0.007 0.025 0.002 0.025 0.	12 4
700A A-36 821P12700 45,600 67,500 31.0 0.160 0.830 0.010 0.005 0.002 0.025	2 4
700A A-36 821P12700 45,600 67,500 31.0 0.160 0.830 0.010 0.005 0.002 0.025	
4 3000G CBL 3/4X6'6/DBL SWG/NOHWD WIRE SO03-005338 224 3360G 5/8"X1.25" GR BOLT A307-3360G 968936-5	4
4 3000G CBL 3/4X6'6/DBL SWG/NOHWD WIRE SO03-005338 224 3360G 5/8"X1.25" GR BOLT A307-3360G 968936-5	
224 3360G 5/8"X1.25" GR BOLT A307-3360G 968936-5	01 4
	4
50 3500G 5/8"X10" GR BOLT A307 A307-3500G 958524-6	4
30 33000 3/8 ATO DOLT AUT A30/-33000 938324-0	
	4
1 of 3	

					Cer	tified A	nalys	is								Tini	SHighwa	Produces Es
Trinity Hig	hway Pr	roducts LLC																
2548 N.E.	28th St					Order Number:	1343951	Pro	od Ln Grp	: 19-	CASS							
Ft Worth (T	HP), TX	X 76111 Phn:(817) 665-1499				Customer PO:	NCHRP 35	0							А	sof:1	1/2/21	
Customer:	SAMF	PLES, TESTING MATERIALS				BOL Number:	85825		Ship Da	te:					-	301, 1	1/2/21	
		Dallas Pkwy				Document #	1											
	Suite !	525				Shipped To:	TX											
	ADDIS	SON, TX 75001				Use State:	TX											
Project:	TTI	TESTING NCHRP PROJECT														18.187 81181 18		
	Part #	Description	Spec	CL 1	Y Heat Code	/ Heat	Yield	TS	Elg	С	Mn	Р	s	Si	Cu	Cb	Cr	Vn ACW
8	3900G	1" ROUND WASHER F844	F844-3900		5053124													4
8	3910G	1" HEX NUT A563	A563-3910		P39590 R75	013												4
50	4076B	WD BLK RTD 6X8X14	WOOD		4850													

4 20207G	12/9'4.5/8-HOLE ANCH/S			2	F12821								
		M-180	Α	2	2113322	56,700	80,500	26.0 0.230	1.000	0.010 0.002	0.030 0.140	0.002 0.060 0.004	4
		M-180	Α	2	2113955	55,900	82,400	25.0 0.230	0.970	0.010 0.001	0.030 0.110	0.002 0.050 0.004	4
		M-180	Α	2	2213518	57,000	84,200	26.0 0.230	0.980	0.011 0.001	0.020 0.120	0.001 0.070 0.004	4
		M-180	A	2	2215927	57,100	80,900	28.0 0.210	0.790	0.010 0.002	0.020 0.070	0.001 0.040 0.004	4
		M-180	A	2	2215929	58,600	80,900	27.0 0.200	0.780	0.009 0.003	0.020 0.070	0.001 0.010 0.004	4
		M-180	A	2	264922	60,406	79,043	24.0 0.200	0.730	0.008 0.002	0.020 0.100	0.000 0.060 0.001	4
		M-180	A	2	267328	62,895	81,187	25.1 0.190	0.720	0.006 0.002	0.020 0.110	0.001 0.060 0.002	4

Upon delivery, all materials subject to Trinity Highway Products , LLC Storage Stain Policy QMS-LG-002.

ALL STEEL USED WAS MELTED AND MANUFACTURED IN USA AND COMPLIES WITH THE BUY AMERICA ACT, 23 CFR 635.410.

ALL GUARDRAIL MEETS AASHTO M-180, ALL STRUCTURAL STEEL MEETS ASTM A36 UNLESS OTHERWISE STATED.

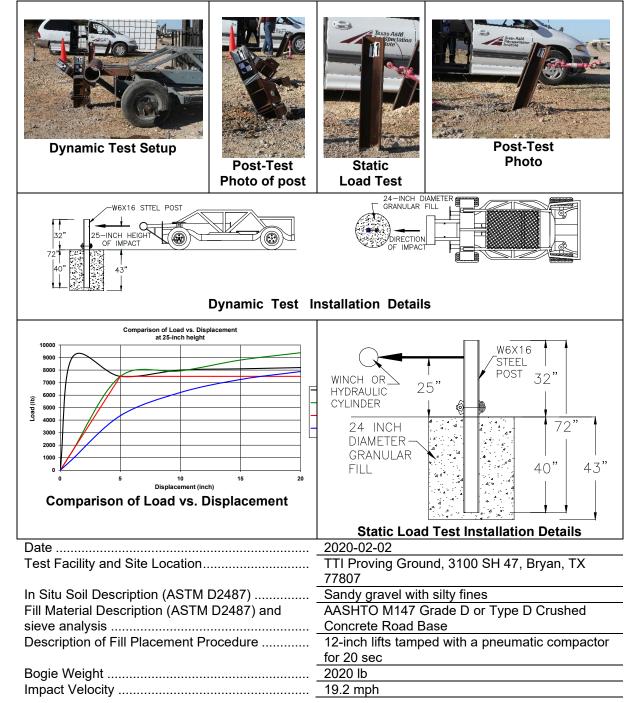
ALL COATINGS PROCESSES OF THE STEEL OR IRON ARE PERFORMED IN USA AND COMPLIES WITH THE "BUY AMERICA ACT", 23 CFR 635.410.

ALL GALVANIZED MATERIAL CONFORMS WITH ASTM A-123 (US DOMESTIC SHIPMENTS)

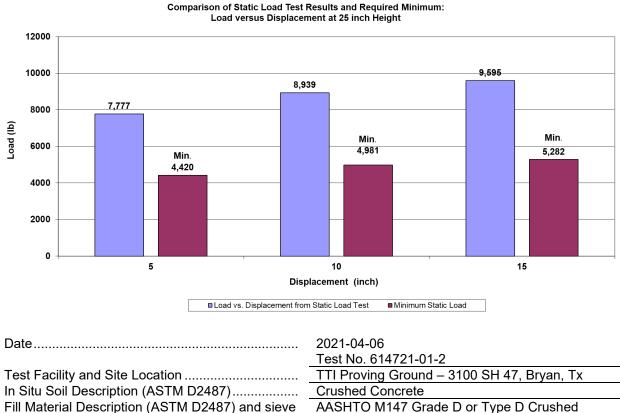
ALL GALVANIZED MATERIAL CONFORMS WITH ASTM A-123 & ISO 1461 (INTERNATIONAL SHIPMENTS)

FINISHED GOOD PART NUMBERS ENDING IN SUFFIX B,P, OR S, ARE UNCOATED

2 of 3


	Certified Analysis	Hudinay Products
Trinity Highway Products LLC		
2548 N.E. 28th St.	Order Number: 1343951 Prod Ln Grp: 19-CASS	
Ft Worth (THP), TX 76111 Phn: (817) 665-1499	Customer PO: NCHRP 350	As of: 11/2/21
Customer: SAMPLES, TESTING MATERIALS	BOL Number: 85825 Ship Date:	A301, 11/2/21
15601 Dallas Pkwy	Document #: 1	
Suite 525	Shipped To: TX	
ADDISON, TX 75001	Use State: TX	
Project: TTI TESTING NCHRP PROJECT		
BOLTS COMPLY WITH ASTM A-307 SPECIFICATIONS AND	ARE GALVANIZED IN ACCORDANCE WITH ASTM A-153, UNLESS (THERWISE STATED.
State of Texas, County of Tarrant. Sworn and subscribed before me this 2 Notary Public: Commission Expires: / Miguel Jimenez Jr My Commission Expires 9/21/2022 Notary ID 133343176	Certified I Quality Assura	All Sta
Migue		
Migue		

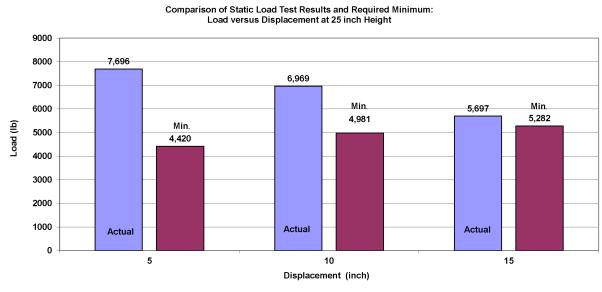
TR No. 614721-01-1&2


196

B.1. SOIL PROPERTIES

Table B.2. Test Day Static Soil Strength Documentation for Test No. 614721-

Concrete Road Base


6-inch lifts tamped with a pneumatic compactor

01-2. С

analysis

Description of Fill Placement Procedure

Table B.3. Test Day Static Soil Strength Documentation for Test No. 614721-01-1.

Actual Load vs. Displacement from Static Load Test Minimum Static Load

Date	2022-10-26
	Test No. 614721-01-1
Test Facility and Site Location	TTI Proving Ground – 3100 SH 47, Bryan, Tx
In Situ Soil Description (ASTM D2487)	Crushed Concrete
Fill Material Description (ASTM D2487) and sieve	AASHTO M147 Grade D or Type D Crushed
analysis	Concrete Road Base
Description of Fill Placement Procedure	6-inch lifts tamped with a pneumatic compactor

APPENDIX C. MASH TEST 3-11 (CRASH TEST NO. 614721-01-2)

C.1. VEHICLE PROPERTIES AND INFORMATION

Table C.1. Vehicle Properties for Test No. 614721-01-2.

Date:	2021-4-	6	Test No.:	6147:	21-01-2	VIN No.:	106	SRR6FT8H	HS695546
Year:	2017		Make:	R	АМ	Model:		1500)
Tire Size	265/70) R 17			Tire	Inflation Pre	ssure:	3	5 psi
Tread Ty	vpe: Highw	ay				Odo	meter: 1	31685	
Note any	/ damage to	the vehi	cle prior to te	est: No	ne		_		
Denot	es acceleror	notor lo <i>c</i>	ation		ŀ	▲X	•		
		neter ioc	alion.						
NOTES:	None			. Î Ť		$+ \rightarrow$			
				A M					
Engine T Engine C				TR.	EEL ACK			<u> </u>	WHEEL
	ssion Type:	_	Manada					←TEST INERTIAL C	. M.
	Nuto or ™D ∏	RWD	Manual						
		-		1					
None	Equipment:			•	E		-	0	В
	Dete						ŢŢ	HA	
Dummy Type:	Dala. NO	NE		* *			Lvt		<u>¥`` ¥ ¥</u>
Mass:	—	0	lb		- ← F►-	⊷н_→		-° _ • _ ·	D
Seat Po	osition:				L L	M	E	√ м	
Geomet	ry: inches				-	FRONT	- C	REAR	
Α	78.50	F	40.00	к_	20.00	P _	3.0	<u>ο</u> ι	-
в	74.00	G _	28.25	L _	30.00	_ Q _	30.5	50 <u></u> \	/
с	227.50	н _	61.55	Μ	68.50	_ R _	18.0		V 61.50
D	44.00	I	11.75	Ν	68.00	S	13.0		<79.00
E	140.50	J	27.00	0	46.00	_ T _	77.0		
	el Center ght Front	14	1.75 Clea	Wheel W arance (Fror	nt)	6.00		Frame	12.50
	el Center ght Rear	14	1.75 Cle	Wheel W arance (Rea		9.25	Bottom Height	i Frame t - Rear	22.50
	IT: A=78 ±2 inches;	C=237 ±13 i				nches; H = 63 ±4 ir	-		/2=67 ±1.5 inches
GVWR F	Ratings:		Mass: Ib	C	urb	<u>Test I</u>	<u>nertial</u>	G	iross Static
Front	3700	_	Mfront		2969		2829		2829
Back _	3900	_	M _{rear}		2148		2206		2206
Total _	6700	_	M _{Total}		5117 (Allowable	Range for TIM and	5035 GSM = 5000 II	b ±110 lb)	5035
	stribution:	ı .	1436		1393		1118		1088
lb		LF:	1400	RF:	1000	LR:		RR:	1000

Table C.2. Exterior Crush Measurements for Test No. 614721-01-2. 2021-4-6 614721-01-2 1C6RR6FT8HS695546 Date: Test No.: VIN No.: 2017 RAM 1500 Year: Make: Model: VEHICLE CRUSH MEASUREMENT SHEET¹ Complete When Applicable End Damage Side Damage Undeformed end width Bowing: B1 _____ X1 ____ B2 _____ X2 Corner shift: A1 A2 End shift at frame (CDC) Bowing constant (check one) $\frac{X1+X2}{2}$ < 4 inches \geq 4 inches

202

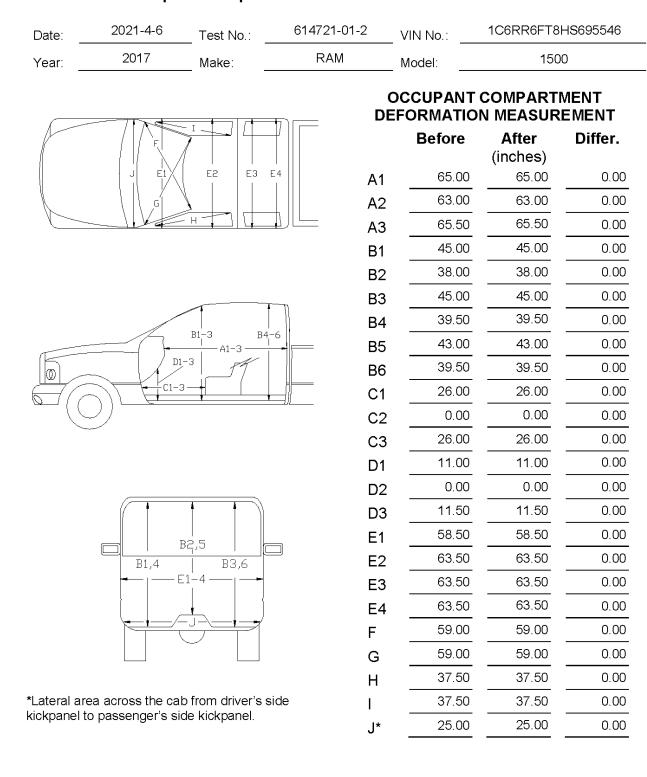
TR No. 614721-01-1&2

Note: Measure C_1 to C_6 from Driver to Passenger Side in Front or Rear Impacts – Rear to Front in Side Impacts.

a .c		Direct I	Damage								
Specific Impact Number	Plane* of C-Measurements	Width** (CDC)	Max*** Crush	Field L**	C_1	C_2	C_3	C_4	C_5	C_6	±D
1	Front plane at bmp ht	72	11	72	-	-	-	-	-	-	0
	Measurements recorded										
	√inches or ☐mm										

¹Table taken from National Accident Sampling System (NASS).

*Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at beltline, etc.) or label adjustments (e.g., free space).


Free space value is defined as the distance between the baseline and the original body contour taken at the individual C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc. Record the value for each C-measurement and maximum crush.

**Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g., side damage with respect to undamaged axle).

202

***Measure and document on the vehicle diagram the location of the maximum crush.

Note: Use as many lines/columns as necessary to describe each damage profile.

Table C.3. Occupant Compartment Measurements for Test No. 614721-01-2.

C.2. SEQUENTIAL PHOTOGRAPHS

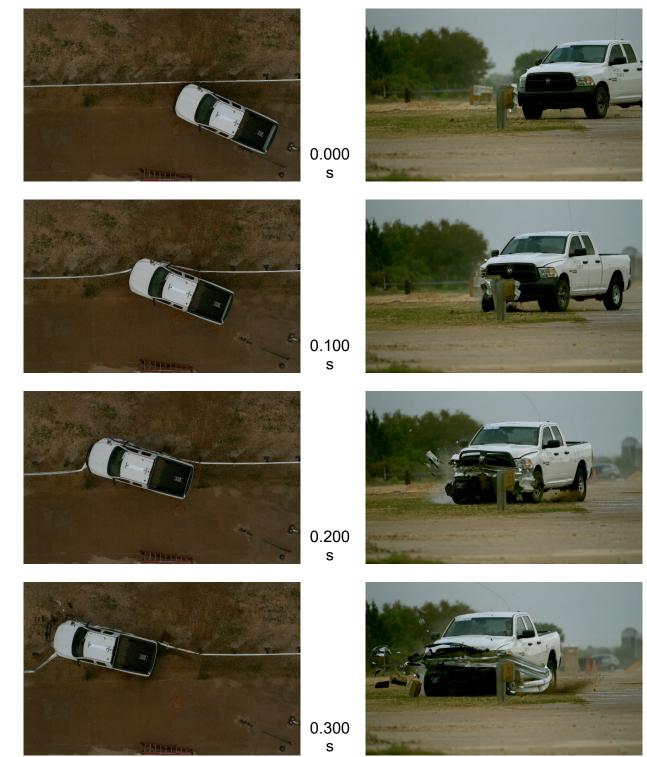


Figure C.1. Sequential Photographs for Test No. 614721-01-2 (Overhead and Frontal Views).

204

204

2023-08-08

Figure C.1. Sequential Photographs for Test No. 614721-01-2 (Overhead and Frontal Views) (Continued).

0.000 s

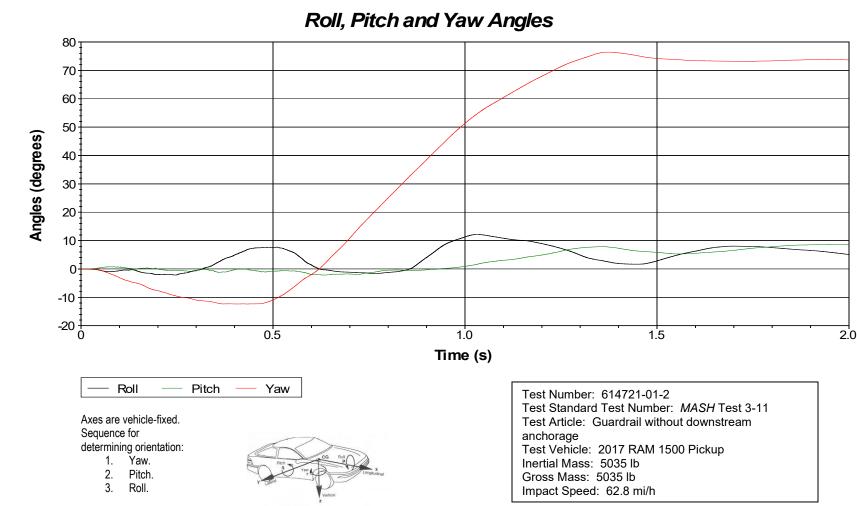
0.100 s

0.200 s

0.300 s

Figure C.2. Sequential Photographs for Test No. 614721-01-2 (Rear View).

0.400 s


0.500 s

0.600 s

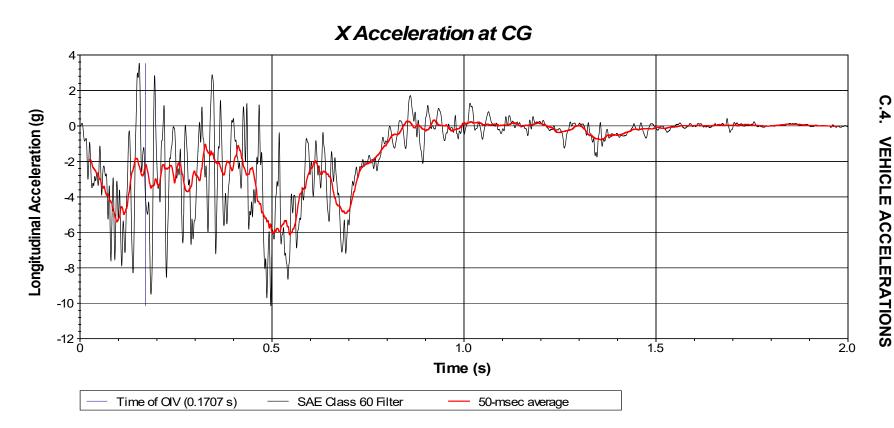


Figure C.4. Vehicle Longitudinal Accelerometer Trace for Test No. 614721-01-2 (Accelerometer Located at Center of Gravity).

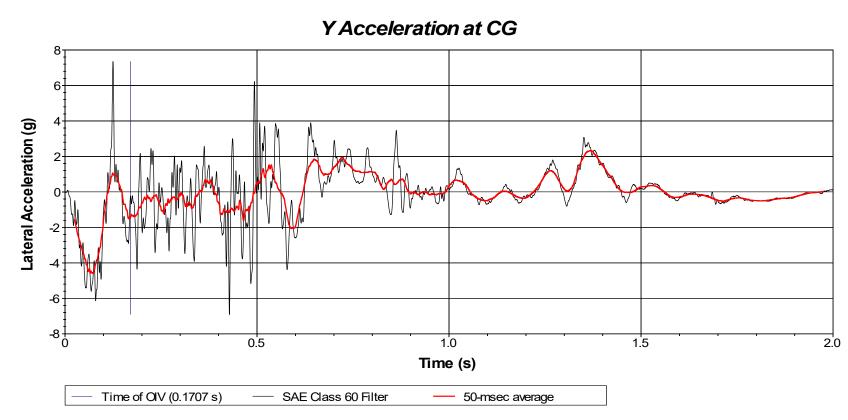


Figure C.5. Vehicle Lateral Accelerometer Trace for Test No. 614721-01-2 (Accelerometer Located at Center of Gravity).

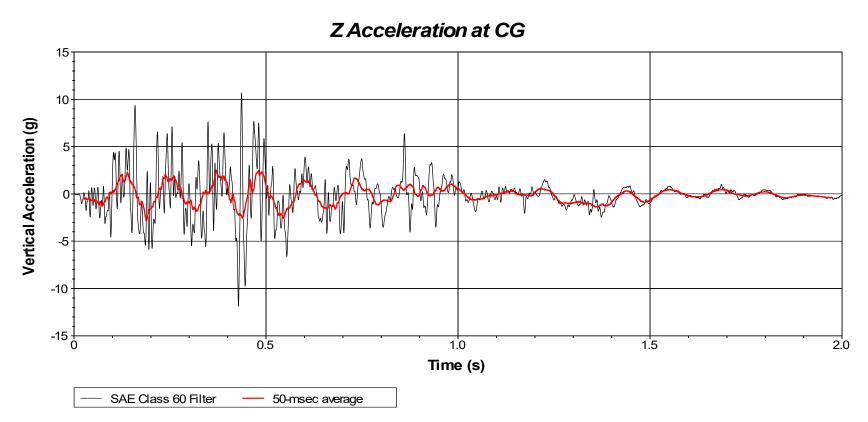


Figure C.6. Vehicle Vertical Accelerometer Trace for Test No. 614721-01-2 (Accelerometer Located at Center of Gravity).

APPENDIX D. MASH TEST 3-11 (CRASH TEST NO. 614721-01-1)

D.1. VEHICLE PROPERTIES AND INFORMATION

Table D.1. Vehicle Properties for Test No. 614721-01-1.

Date:202	2-10-26	Test No.:	61472	21-01-1	VIN No.	: <u>1C6R</u>	R6FT1GS4	05436
Year:	2016	Make	R	۹M	Model	:	1500	
Tire Size:	265/70 R 17			Tire I	nflation Pr	essure:	35 p	si
Tread Type: H	Highway				Odd	ometer: 132	2772	
Note any dama	ge to the ve	hicle prior to te	est: Nor	ne				
 Denotes ass 	-			۲	•X_	-		
Denotes acc		ocation.						
NOTES: None	9		1 t		$\uparrow \mid \uparrow$			
			A M		↓- •e			– N T
Engine Type: Engine CID:	V-8 5.7 liter		WHE TRA	EL CK			i	WHEEL
Transmission T	· ·	1	0.42				EST INERTIAL C. M.	
↓ Auto FWD	or L	Manual			*	T-A-		
			P					- T
Optional Equip None	nent.		1			0		Д В
Dummy Data:			j j j	FFG			(D)-	
Type:	NONE		<u> </u>			LvLs	\neg	_ <u>+ + + +</u>
Mass:		lb		← F →	— н — ►	L _G	D—	*
Seat Position:				↓ ↓	м	Ľ	₩	
Geometry: in	nches			- 12	FRONT	— C ———	REAR	•
A78.50		40.00	к _	20.00	Р.	3.00	_ U _	26.75
B74.00		28.40	L	30.00	_ Q _	30.50	_ V _	30.25
C 227.50		61.54	Μ	68.50	_ R_	18.00	W	61.50
D 44.00		11.75	N	68.00	S	13.00	_ ×_	79.00
E 140.50 Wheel Cente		27.00	O Wheel We	46.00	- T -	77.00 Bottom Fr		
Height Fron	t	14.75 Clea	arance (Fron	t)	6.00	Height - F	Front	12.50
Wheel Cente Height Rea	r		Wheel We arance (Rea	r)	9.25	Bottom Fr Height -	Rear	22.50
RANGE LIMIT: A=78 ±								
GVWR Ratings		Mass: Ib	<u>Cı</u>	<u>urb</u> 2027	<u>Test</u>	Inertial	<u>Gros</u>	<u>s Static</u>
Front <u>37</u> Back <u>39</u>		M _{front}		2927 2020		2833 2208		2833 2208
		M _{rear}		4947		5041		5041
		M _{Total}			Range for TIM an	d GSM = 5000 lb ±1	10 lb)	0041
Mass Distribut	ion: LF:	1409	RF:	1424	LR:	1139	RR:	1069

Table D.2. Exterior Crush Measurements for Test No. 614721-01-1. 2022-10-26 614721-01-1 1C6RR6FT1GS405436 Date: Test No.: VIN No.: 2016 RAM 1500 Year: Make: Model: VEHICLE CRUSH MEASUREMENT SHEET¹ Complete When Applicable Side Damage End Damage Bowing: B1 _____ X1 Undeformed end width B2 X2 Corner shift: A1 A2 End shift at frame (CDC) Bowing constant $\frac{X1+X2}{2} =$ (check one) < 4 inches \geq 4 inches

212

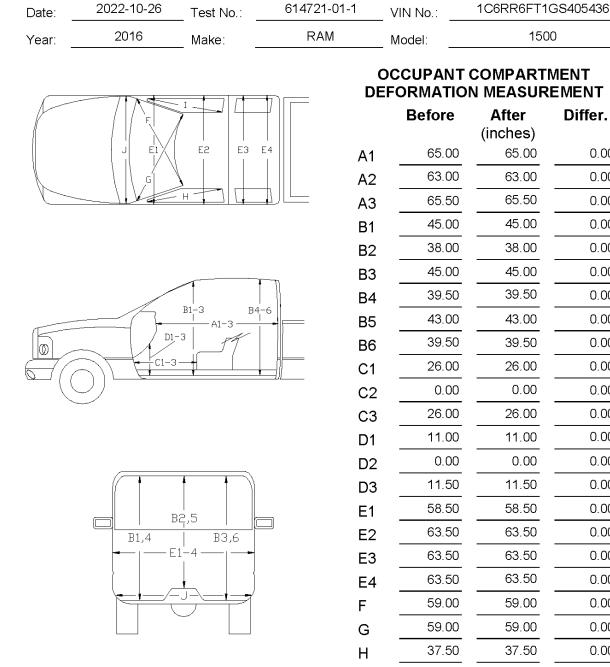
TR No. 614721-01-1&2

Note: Measure C₁ to C₆ from Driver to Passenger Side in Front or Rear Impacts – Rear to Front in Side Impacts.

a :a		Direct I									
Specific Impact Number	Plane* of C-Measurements	Width*** (CDC)	Max*** Crush	Field L**	C_1	C_2	C_3	C ₄	C_5	C_6	±D
1	ABOVE FT BUMPER	14	10	72							0
	Measurements recorded										
	√inches or ☐mm										

¹Table taken from National Accident Sampling System (NASS).

*Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at beltline, etc.) or label adjustments (e.g., free space).


Free space value is defined as the distance between the baseline and the original body contour taken at the individual C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc. Record the value for each C-measurement and maximum crush.

**Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g., side damage with respect to undamaged axle).

***Measure and document on the vehicle diagram the location of the maximum crush.

Note: Use as many lines/columns as necessary to describe each damage profile.

2023-08-08

Table D.3. Occupant Compartment Measurements for Test No. 614721-01-1.

*Lateral area across the cab from driver's side kickpanel to passenger's side kickpanel.

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

213

TR No. 614721-01-1&2

2023-08-08

TR No. 614721-01-1&2

L

J*

37.50

25.00

37.50

25.00

D.2. SEQUENTIAL PHOTOGRAPHS

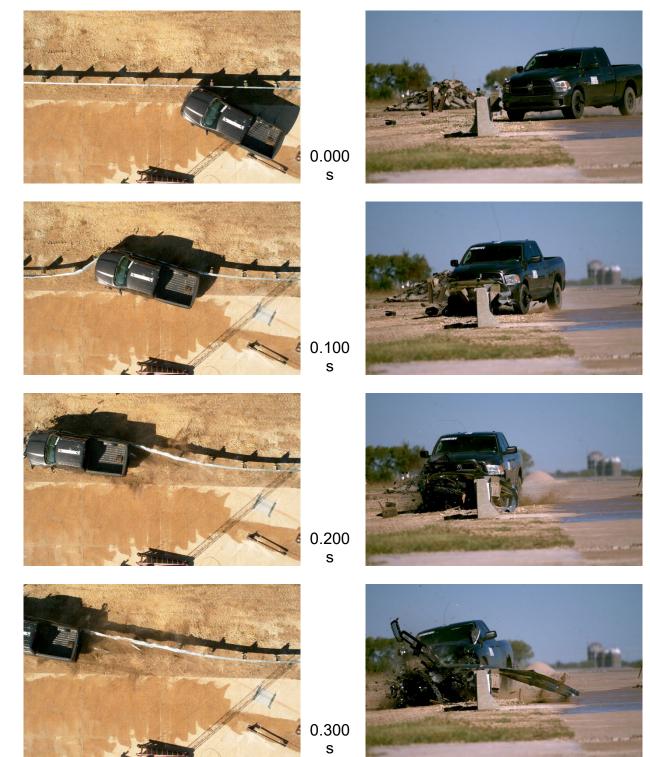


Figure D.1. Sequential Photographs for Test No. 614721-01-1 (Overhead and Frontal Views).

2023-08-08

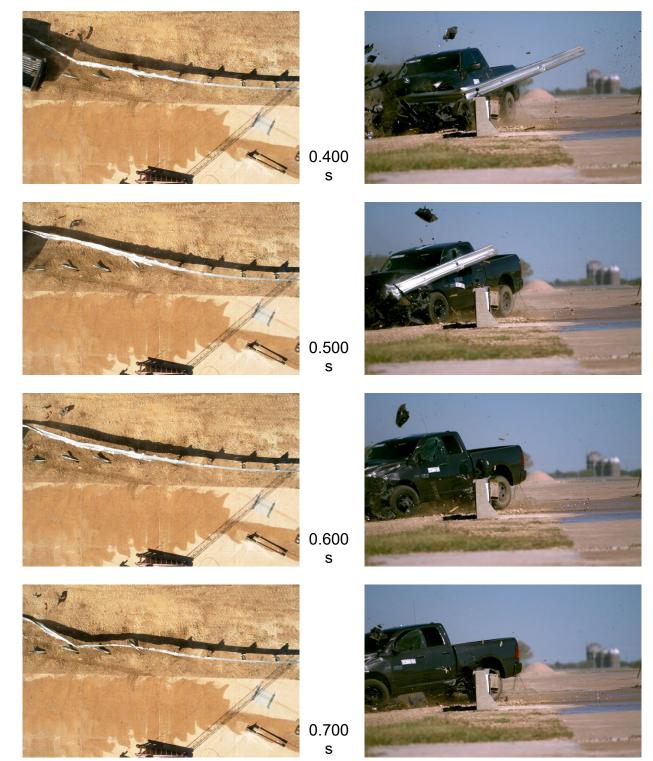
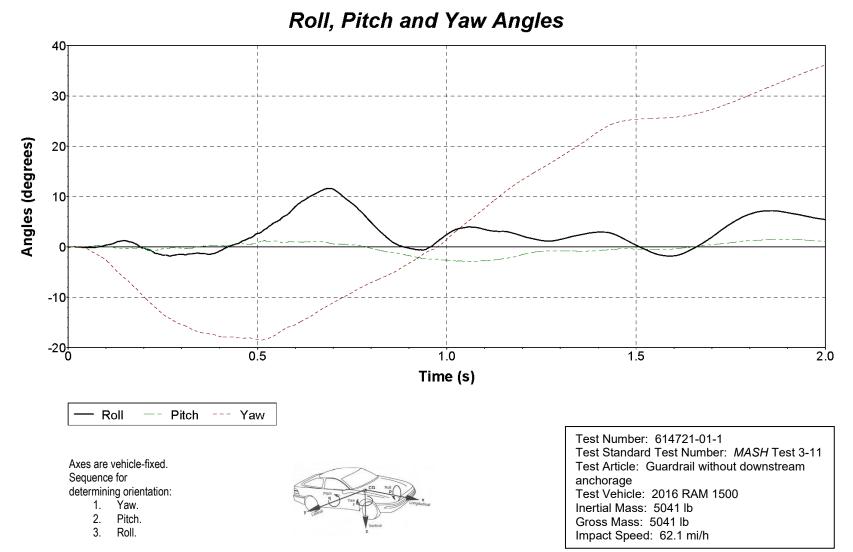


Figure D.1. Sequential Photographs for Test No. 614721-01-1 (Overhead and Frontal Views) (Continued).

0.200 s

0.400 s

0.500 s



0.600 s

Figure D.2. Sequential Photographs for Test No. 614721-01-1 (Rear View).

D.3.

VEHICLE ANGULAR DISPLACEMENTS

Figure D.3. Vehicle Angular Displacements for Test No. 614721-01-1.

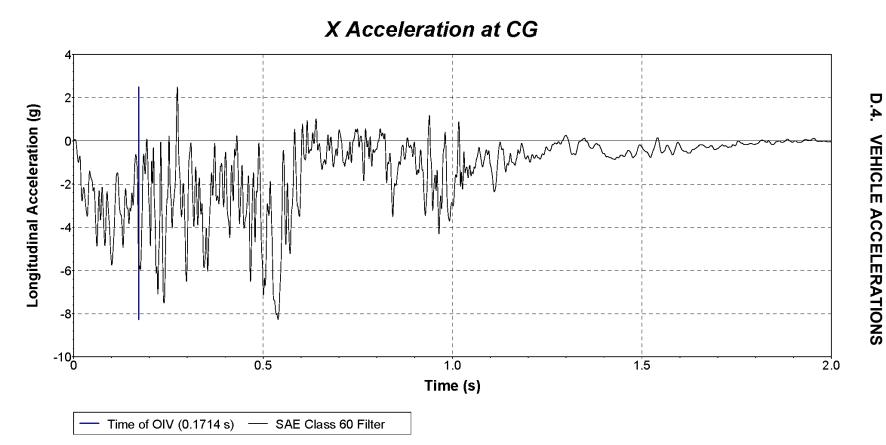
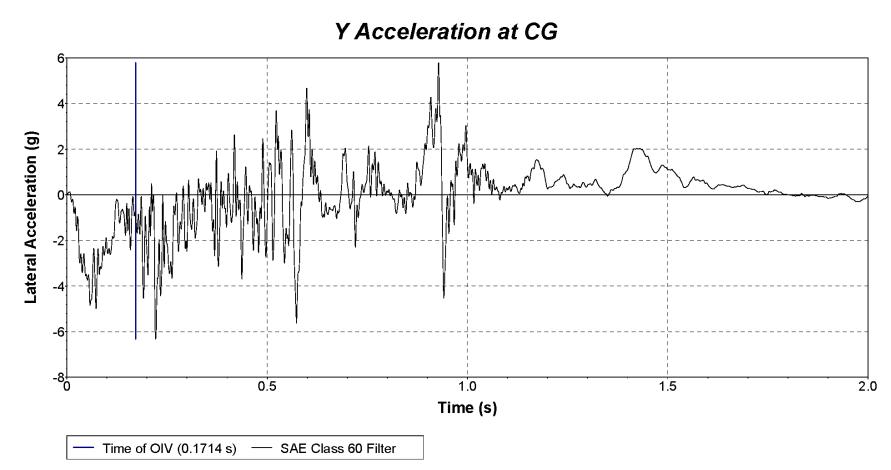
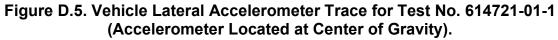




Figure D.4. Vehicle Longitudinal Accelerometer Trace for Test No. 614721-01-1 (Accelerometer Located at Center of Gravity).

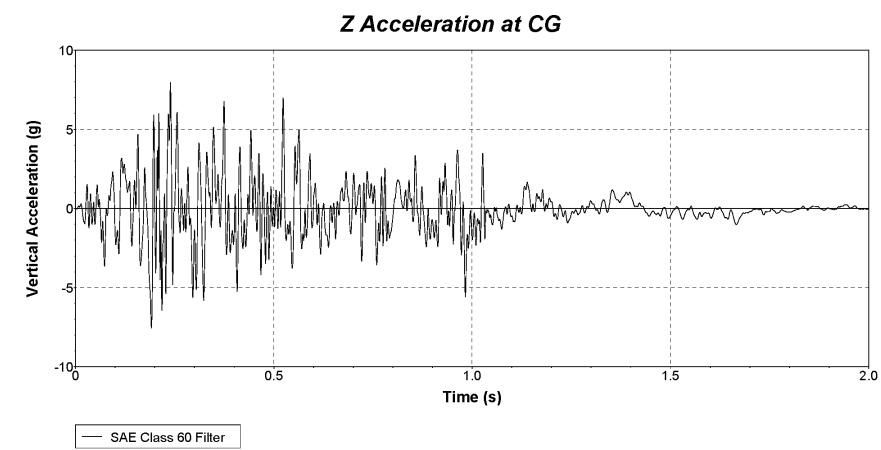


Figure D.6. Vehicle Vertical Accelerometer Trace for Test No. 614721-01-1 (Accelerometer Located at Center of Gravity).