

Test Report No. 602941 Test Report Date: August 2020

FEASIBILITY STUDY FOR ADDRESSING EXTREME SITE CONSTRAINTS AT BRIDGE ENDS

by

Dusty R. Arrington Associate Transportation Researcher

Akram Abu-Odeh, Ph.D. Research Scientist

Randy Hirsch Graduate Assistant

and

Chiara Silvestri Dobrovolny, Ph.D. Research Scientist

Contract No.: 602941

Sponsored by Roadside Safety Pooled Fund Group

TEXAS A&M TRANSPORTATION INSTITUTE PROVING GROUND

Mailing Address: Roadside Safety & Physical Security Texas A&M University System 3135 TAMU College Station, TX 77843-3135 Located at: Texas A&M University System RELLIS Campus Building 7091 1254 Avenue A Bryan, TX 77807

DISCLAIMER

The contents of this report reflect the views of the authors, who are solely responsible for the facts and accuracy of the data and the opinions, findings, and conclusions presented herein. The contents do not necessarily reflect the official views or policies of the Roadside Pooled Fund, The Texas A&M University System, or the Texas A&M Transportation Institute (TTI). This report does not constitute a standard, specification, or regulation. In addition, the above listed agencies/companies assume no liability for its contents or use thereof. The names of specific products or manufacturers listed herein do not imply endorsement of those products or manufacturers.

The results reported herein apply only to the article tested. The full-scale crash tests were performed according to TTI Proving Ground quality procedures and *Manual for Assessing Safety Hardware* guidelines and standards.

The Proving Ground Laboratory within TTI's Roadside Safety and Physical Security Division ("TTI Lab") strives for accuracy and completeness in its crash test reports. On rare occasions, unintentional or inadvertent clerical errors, technical errors, omissions, oversights, or misunderstandings (collectively referred to as "errors") may occur and may not be identified for corrective action prior to the final report being published and issued. If, and when, the TTI Lab discovers an error in a published and issued final report, the TTI Lab shall promptly disclose such error to Roadside Pooled Fund, and both parties shall endeavor in good faith to resolve this situation. The TTI Lab will be responsible for correcting the error that occurred in the report, which may be in the form of errata, amendment, replacement sections, or up to and including full reissuance of the report. The cost of correcting an error in the report shall be borne by the TTI Lab. Any such errors or inadvertent delays that occur in connection with the performance of the related testing contract shall not constitute a breach of the testing contract.

THE TTI LAB SHALL NOT BE LIABLE FOR ANY INDIRECT, CONSEQUENTIAL, PUNITIVE, OR OTHER DAMAGES SUFFERED BY THE ROADSIDE POOLED FUND OR ANY OTHER PERSON OR ENTITY, WHETHER SUCH LIABILITY IS BASED, OR CLAIMED TO BE BASED, UPON ANY NEGLIGENT ACT, OMISSION, ERROR, CORRECTION OF ERROR, DELAY, OR BREACH OF AN OBLIGATION BY THE TTI LAB.

1. Report No.	2. Government Accession No.	3. Recipient's Catalog No.
4. Title and Subtitle FEASIBILITY STUDY FOR ADD	RESSING EXTREME SITE	5. Report Date August 2020
CONSTRAINTS AT BRIDGE ENI	DS	6. Performing Organization Code
^{7. Author(s)} Dusty R. Arrington, Akram Abu-Oo Silvestri Dobrovolny	leh, Randy Hirsch, and Chiara	8. Performing Organization Report No. Test Report No. 602941
9. Performing Organization Name and Address Texas A&M Transportation Institut	e Proving Ground	10. Work Unit No. (TRAIS)
3135 TAMU College Station, Texas 77843-3135		11. Contract or Grant No. 2014 LA-35/TN-66
12. Sponsoring Agency Name and Address Washington State Department of Tr Transportation Building, MS 47372	13. Type of Report and Period Covered Technical Report: 2014 – 2020	
Olympia, WA 98504-7372		14. Sponsoring Agency Code

16. Abstract

The scope of this research study was to investigate extreme site constraints at bridge ends encountered by State DOTs. A categorization methodology is provided for determining proper impact conditions and evaluation criteria for future design concepts. The researchers supplied impact conditions and evaluation criteria for future hardware designs for roadside safety application to be applied at extreme sites at bridge ends. This project does not aim to develop a hardware solution for these site conditions. This study aimed to develop criteria for the development of future hardware solutions. The test matrix presented as a solution will be based on data collected from previous research efforts. The resulting proposed criteria allows for the development of future products that are both crashworthy and that fit within the site-specific conditions.

The research also involved developing a survey to identify critical case scenarios that could be further investigated. The survey aimed to collect data from all the State DOTs to help identify the most common critical case scenarios observed in different states.

A comparison between the evaluation criteria in American Association of State Highway and Transportation Officials (AASHTO) *Manual for Assessing Safety Hardware* (MASH) and Federal Motor Vehicle Safety Standards (FMVSS) was discussed. This evaluation is to be utilized when site specific conditions make MASH compliance impossible. The study identifies the cases where use of MASH is impossible and instead applies evaluation criteria in alignment with FMVSS.

After analyzing specific extreme site constraint cases indicated by state DOTs, researchers developed criteria for evaluating roadside safety devices placed in areas with extreme site constraints.

^{17. Key Words} Driveway, roads, right-of-way, shor guardrail, longitudinal barrier, crash attenuator, bridge rail ends, roadside	cushion, crash	18. Distribution Statemen Copyrighted. Not consent from the	to be copied or re	1
19. Security Classif. (of this report) Unclassified	iis page)	21. No. of Pages 84	22. Price	

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized.

APPROXIMATE CONVERSIONS TO SI UNITS Symbol When You Know Multiply By To Find Symbol in inches 25.4 millimeters mm in inches 25.4 millimeters m yd yards 0.914 meters m millimeters 0.914 meters m millimeters 645.2 square millimeters m ² data square feet 0.093 square meters m ² acces 0.405 bectares ha mill square milles 2.59 square kilometers m ² acces 0.405 bectares m m gal galons 3.785 liters m m gal galons 3.785 galons		SI* (MODERN	METRIC) CONV	ERSION FACTORS		
Inches LENGTH millimeters mm in inches 25.4 millimeters mm yd yards 0.914 meters m yd yards 0.914 meters m miles 1.61 kilometers m miles 645.2 square meters m² yd² square feet 0.093 square meters m² yd² square feet 0.093 square meters m² yd² square miles 2.59 square kilometers m² gal gallons 3.785 litters L fl³ cubic feet 0.028 cubic meters m³ yd³ cubic sorts 0.765 cubic meters m³ outics 0.2836 grams gagarams (or metric ton") Mg (or "" T Fahrenheit 5(F:32)/9 Celsius "C or ounces 28.36 grams newtons kPa						
In the inches LENGTH millimeters mm in the feet 0.305 meters m yd yards 0.914 meters m min miles 1.61 kilometers m the interestion AREA meters m the interestion 0.933 square meters m ² the interestion 0.933 square meters m ² yd ² square parts 0.436 square meters m ² yd ² square miles 2.59 square kilometers m floid ounces 29.57 milliliters L m fl ³ cubic feet 0.028 cubic meters m ³ vd ³ cubic yards 0.765 cubic meters m ³ vd ³ cubic yards 0.765 cubic meters ga gal galars 0.907 megagarans (or metric tor") Mg (or "") T ForRCE and PRESURE restons N br/in	Symbol				Symbol	
ft feet 0.305 meters m yards 0.914 meters m miles 1.61 kilometers km ft ² square inches 645.2 square meters m ² ft ² square feet 0.093 square meters m ² ac accres 0.405 hectares ha ml ² square miles 2.59 square kilometers m ² gal galons 3.785 liters L ft ³ cubic feet 0.028 cubic meters m ³ yd ³ cubic feet 0.028 cubic meters m ³ yd ³ cubic grads 0.454 kilograms kg to pounds 0.454 square silograms kg tilo short tons (2000 lb) 0.907 megagrams (or metric ton") Mg (or "" ft ⁴ poundforce 4.45 newtons N bf/m ² poundforce for square inch 6.89 kilograas <th></th> <th>•</th> <th></th> <th>1</th> <th></th>		•		1		
yd yards 0.914 meters m mi miles 1.61 kilometers km in ² square inches 645.2 square meters m ² in ² square gards 0.836 square meters m ² yd ² square meters m ² ac ac ac ac acces 0.405 hectares ha ml ² square miles 2.59 square kilometers m ² gal gallons 3.785 liters L fl ³ cubic feet 0.028 cubic meters m ³ yd ³ cubic gards 0.765 cubic meters m ³ ounces 28.35 grams g g ounces 0.454 kilograms Kg T short tons (2000 lb) 0.907 megagarans (or metric ton") M (or "t") "F Fahrenheit 5(F-32)(9 Celsius *C *C or (F-32)(1.8 revet	in	inches	25.4	millimeters	mm	
miles 1.61 kilometers km in ² square inches 645.2 square mellimeters mm ² ft ² square feet 0.093 square meters m ² ac accres 0.405 hectares ha mi ² square miles 2.59 square keters km ² ft oz fluid ounces 29.57 milliliters mL gal gallons 3.785 liters L ft ³ cubic feet 0.028 cubic meters m ³ yd ³ cubic feet 0.028 cubic meters m ³ ounces 28.35 grams g g gal pounds 0.454 kilograms kg or (F-32)/1.8 FORCE and PRESSURE or STRESS C C C fb/m ² poundforce 4.45 newtons N bf/m ² poundforce 6.89 kilopascals kPa square meters 0.039 inches	ft	feet	0.305	meters	m	
AREAin²square inches645.2square millinetersmm²yd²square feet0.093square metersm²yd²square yards0.836square metersm²acacres0.405hectareshaml²square miles2.59square kilometerskm²fl ozfluid ounces29.57millilifiersLgalgallons3.785littersLfl'cubic feet0.028cubic metersm³yd³cubic yards0.765cubic metersm³yd³cubic yards0.785gramsgjbpounds0.454kilogramsgrshort tons (2000 lb)0.907megagrams (or metric ton")Mg (or """FFahrenheit5(F-32)/9Celsius°Cor (F-32)/1.8FORCE and PRESSURE or STRESSklopascalsKPalb/in²poundforce per square inch6.89kilopascalsKPaSymbolWhen You KnowMultiply ByTo FindSymbolmmmillimeters0.039inchesinmmeters3.28feetft²mm2square meters1.09yardsyd²kilometers0.38square feetft²masquare meters1.09yardsyd²kilometers0.38square feetft²mmmillimeters0.039inchesinmmmillime	yd	yards	0.914	meters	m	
in² square inches 645.2 square millimeters mn² ft² square feet 0.093 square millers m² ac acres 0.405 hectares ha m² square milles 2.59 square kilometers km² ft3 square milles 2.59 square kilometers km² ft3 gallons 3.785 litters n n ft3 cubic feet 0.028 cubic meters m³ oubic feet 0.028 cubic meters m³ yd³ cubic yards 0.765 cubic grams g g ounces 28.35 grams g g g yd³ pounds 0.454 kilograms kg °C r short tons (2000 lb) 0.907 megagrams (or metric ton") Mg (or "") %F Fahrenheit 6(F-32)/9 Celsius C C or (F-32)/1.8 newtons N N N p	mi	miles	1.61	kilometers	km	
ft ² square feet 0.093 square meters m ² yd ² square yards 0.836 square meters m ² ac as cres 0.405 hectares ha mi ² square miles 2.59 square kilometers km ² floa fluid ounces 29.57 millitters L gal gallons 3.785 liters L gal gallons 0.765 cubic meters m ³ yd ³ cubic feet 0.028 cubic meters g gat galons 0.765 cubic meters g yd ³ cubic feet 0.028 cubic meters g gat pounds 0.454 kilograms g of cubic vards 0.454 kilograms K c'C or (F-32)/9 Celsius °C °C °C of (F-32)/1.8 PMPOXIMATE CONVERSIONS FROM SI UNITS MMetors N b/fin ² poundforce 4.45			AREA			
yd² square yards 0.836 square meters m² acres 0.405 hectares ha m² square miles 2.59 square kilometers km² floz fluid ounces 29.57 milliliters mL gal galons 3.785 liters L gal galons 3.785 liters L gal galons 0.765 cubic meters m³ oubic feet 0.028 cubic meters m³ oubic stall be shown in m³ MASS galogarams g outonces 28.35 grams g outors 0.454 kilograms kg r short tons (2000 lb) 0.907 megagarams (or metric ton") Mg (or "" "F Fahrenheit S(F-32)/9 Celsius °C or (F-32)/1.8 celsius °C °C symbol When You Know Multiply By To Find Symbol mm meters <td></td> <td></td> <td>645.2</td> <td>square millimeters</td> <td>mm²</td>			645.2	square millimeters	mm ²	
ac acres 0.405 hectares ha mi ² square miles 2.59 square kilometers km ² VOLUME fl oz fluid ounces 2.9.57 millitters mL gal gallons 3.785 litters L th ³ cubic feet 0.028 cubic meters m ³ vDTE: volumes greater than 1000 shall be shown in m ³ NOTE: volumes greater than 1000 shall be shown in m ³ NOTE: volumes greater than 1000 shall be shown in m ³ T short tons (2000 lb) 0.907 megagrams (or metric ton") Mg (or "t" "F Fahrenheit 5(F-32)/1.8 FORCE and PRESSURE or STRESS lbf poundforce for the stress stress lbf/m ² poundforce 4.45 newtons N bib/m ² poundforce 4.45 newtons N bib/m ² poundforce 4.45 newtons N bib/m ² poundforce stress stress stress lbf/m ² poundforce stress stress stress lbf/m ² motore square inch 6.89 kilopascals kPa APPROXIMATE CONVERSIONS FROM SI UNITS Symbol When You Know Multiply By To Find Symbol m meters 3.28 feet ft m meters 0.039 inches in m meters 0.021 miles mi m ² square millimeters 0.039 inches in m meters 1.09 yards yd km kilometers 0.621 miles mi m ² square meters 1.795 square feet ft ² m ² square meters 1.795 square feet ft ² m ³ square meters 1.795 square feet ft ² m ³ square meters 1.795 square indens mi 4REA mm ² square meters 1.795 square indens mi 4REA m ³ cubic meters 3.5314 cubic feet ft ³ m ³ cubic meters 3.5314 fuid ounces oz km ³ cubic meters 3.5314 fuid ounces oz km ³ cubic meters 3.5314 cubic feet ft ³ m ³ cubic meters	ft ²	square feet	0.093	square meters		
mi²square miles2.59square kilometerskm²fl ozfluid ounces29.57milililitersmLgalgallons3.785litersLft³cubic feet0.028cubic metersm³oubic yards0.765cubic metersm³oubic yards0.765cubic metersm³oubic yards0.454kilogramskgozounces28.35gramsgbpounds0.454kilogramskgrshort tons (2000 lb)0.907megagrams (or metric ton")Mg (or "t")*FFahrenheit5(F-32)/9Celsius°Cor (F-32)/1.8Celsius°C°CEPORE and PRESSURE or STRESSIbfpoundforce4.45newtonsNb/fin²poundforce per square inch6.89kilopascalskPaAPPROXIMATE CONVERSIONS FROM SI UNITSSymbolWhen You KnowMultiply ByTo FindSymbolSquare meters0.029inchesinmmeters3.28feetftmmeters0.36square inchesin?msquare meters1.09yardsyd²kilometers0.336square milesmi²mmeters3.38feetft²mmeters3.36square milesmi²msquare meters1.0764square miles <td>yd²</td> <td>square yards</td> <td>0.836</td> <td>square meters</td> <td>m²</td>	yd²	square yards	0.836	square meters	m²	
Instruction VOLUME fl oz fluid ounces 29.57 millilliters mL fl*3 cubic feet 0.028 cubic meters m³ gallons 3.785 cubic meters m³ gyd3 cubic feet 0.028 cubic meters m³ NOTE: volumes greater than 1000L shall be shown in m³ Output Colspan="2">MASS output Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2" TEMPERATURE (exact degrees) "F Fahrenheit S(F-32)/9 Celsius °C Or (F-32)/1.8 PORCE and PRESSURE or STRESS Ibf poundforce per square inch 6.89 APPROXIMATE CONVERSIONS FROM SI UNITS Symbol When You Know Multiply By To Find Symbol meters 1.09 yards yd meters 0.039 inches in meters 1.0764 square inches in²						
fl oz fluid ounces 29.57 milliiters mL gal gallons 3.785 litters L m 3 (model) (mi ²	square miles		square kilometers	km²	
gal gallons 3.785 liters L ft ³ cubic feet 0.028 cubic meters m ³ yd ³ NOTE: volumes greater than 1000L shall be shown in m ³ NOTE: volumes greater than 1000L shall be shown in m ³ oz ounces 28.35 grams g b pounds 0.454 kilograms kg T short tons (2000 lb) 0.907 megagrams (or metric ton") Mg (or "t") "F Fahrenheit 5(F-32)/9 Celsius °C or (F-32)/1.8 FORCE and PRESSURE or STRESS Ibf poundforce 4.45 newtons N lbf/in ² poundforce 4.45 newtons N N						
fi3 cubic feet 0.028 cubic meters m³ yd³ cubic yards 0.765 cubic meters m³ NOTE: volumes greater than 1000L shall be shown in m³ oz ounces 28.35 grams g jb pounds 0.454 klograms g T short tons (2000 lb) 0.907 megagrams (or metric ton") Mg (or "t") TEMPERATURE (exact degrees) "F Fahrenheit 5(F-32)/9 Celsius °C FORCE and PRESSURE or STRESS lbf poundforce 4.45 newtons N lbf/in ² poundforce per square inch 6.89 kilopascals kPa CENCE or STRESS Ibf poundforce Multiply By To Find Symbol Symbol When You Know Multiply By To Find Symbol square meters 1.09 yards yd m meters 0.039 inches in					mL	
yd³ cubic yards 0.765 cubic meters m³ NOTE: volumes greater than 1000L shall be shown in m³ MASS gamma g oz ounces 28.35 grams g b pounds 0.454 kilograms kg T short tons (2000 lb) 0.907 megagrams (or metric ton") Mg (or "t") TEMPERATURE (exact degrees) °C or (F-32)/1.8 FORCE and PRESSURE or STRESS lbf poundforce per square inch 6.89 kilopascals kPa bif moundforce per square inch 6.89 kilopascals kPa Symbol When You Know Multiply By To Find Symbol meters 3.28 feet ft m meters 0.039 inches ini mm square meters 1.09 yards yd mm square meters 0.021 miles mi mm2 <td>gal</td> <td></td> <td></td> <td></td> <td></td>	gal					
NOTE: volumes greater than 1000L shall be shown in m ³ MASS MASS oz ounces 28.35 grams g Deponds 0.907 megagrams (or metric ton") Mg (or "t") TEMPERATURE (exact degrees) °C TEMPERATURE (exact degrees) °C TEMPERATURE (exact degrees) °C TEMPERATURE (exact degrees) °C FORCE and PRESSURE or STRESS Ibf poundforce 4.45 newtons N bif poundforce 4.45 newtons N Symbol When You Know Multiply By To Find Symbol Symbol When You Know Multiply By To Find Symbol Symbol When You Know Multiply By To Find <th colspan<="" td=""><td></td><td></td><td></td><td></td><td></td></th>	<td></td> <td></td> <td></td> <td></td> <td></td>					
MASS oz ounces 28.35 grams g b pounds 0.454 kilograms kg T short tons (2000 lb) 0.907 megagrams (or metric ton") Mg (or "t") TEMPERATURE (exact degrees) "F Fahrenheit 5(F-32)/9.8 Celsius °C or (F-32)/1.8 FORCE and PRESSURE or STRESS lbf poundforce per square inch 6.89 kilopascals kPa Symbol When You Know Multiply By To Find Symbol Symbol When You Know Multiply By To Find Symbol mm meters 3.28 feet ft m meters 0.039 inches in m meters 0.621 miles mi meters 1.05 square inches in² m ² square meters 1.195 square feet ft² m ² square meters 1.195 square galas mi² km kilometers 0.336 square feet ft² m ² square meters 1.195 square meters aces	yd ³	cubic yards			m ³	
oz ounces 28.35 grams g ib pounds 0.454 kilograms (or metric ton") Mg (or "t") "F Fahrenheit 5(F-32)/9 Celsius "C "F Fahrenheit 5(F-32)/9 Celsius "C blf poundforce 4.45 newtons N Ibf poundforce per square inch 6.89 kilopascals kPa Symbol When You Know Multiply By To Find Symbol meters 0.039 inches in m meters 0.22 miles mi mm millimeters 0.039 inches in m meters 1.09 yards yd m square meters 10.764 square inches in² m2 square meters 0.386 square meter qd m2 square meters 0.374 gallons gal m3 cubic meters 3.5.314		NOTE: volur		shall be shown in m ³		
Ib pounds 0.454 kilograms igg T short tons (2000 lb) 0.907 megagrams (or metric ton") Mg (or "t") TEMPERATURE (exact degrees) °F Fahrenheit 5(F-32)/9 Celsius °C or (F-32)/1.8 FORCE and PRESSURE or STRESS Ibf poundforce 4.45 newtons N hypercelstance Symbol When You Know Multiply By To Find Symbol Symbol When You Know Multiply By To Find Symbol m ELECTH mm meters 3.28 feet ft m meters 0.039 inches in mm meters 0.021 miles mi mm ² square meters 0.021 miles mi mm ² square meters 10.764 square feet ft ² m ² square meters 0.386 square miles mi ² m ³ cubic meters 35.314 cubic feet ft ³ m ³ cubic meters 35.314 cubic feet ft ³ m						
T short tons (2000 lb) 0.907 megagrams (or metric ton") Mg (or "t") TEMPERATURE (exact degrees) °F Fahrenheit 5(F-32)/9 Celsius °C or (F-32)/1.8 FORCE and PRESSURE or STRESS lbf poundforce 4.45 newtons N Ibf poundforce presquare inch 6.89 kilopascals kPa Symbol When You Know Multiply By To Find Symbol Symbol When You Know Multiply By To Find Symbol meters 3.28 feet ft m meters 3.28 feet ft m meters 0.039 inches in mm ² square millimeters 0.621 miles mil mm ² square meters 1.09 yards yd ² m ² square meters 1.95 square feet ft ² m ² square meters 1.95 square feet ft ³ m ² square inditers 0.346<					g	
TEMPERATURE (exact degrees) °F Fahrenheit 5(F-32)/9 Celsius °C or (F-32)/1.8 FORCE and PRESSURE or STRESS lbf poundforce 4.45 newtons N hewtons N hewtons N hewtons N hewtons N by poundforce per square inch 6.89 kilopascals kPa APPROXIMATE CONVERSIONS FROM SI UNITS Symbol When You Know Multiply By To Find Symbol meters 0.039 inches in m meters 3.28 feet ft m meters 0.09 yards yd km kilometers 0.621 miles mil mm ² square meters 1.09 yards yd ² ha hectares 2.47 acres ac km ² square meters 0.34 fluid ounces oz L liters						
°F Fahrenheit 5(F-32)'9 Celsius °C or (F-32)/1.8 or (F-32)/1.8 °C FORCE and PRESSURE or STRESS Ibf poundforce 4.45 newtons N Ibf/in ² poundforce per square inch 6.89 kilopascals kPa APPROXIMATE CONVERSIONS FROM SI UNITS Symbol When You Know Multiply By To Find Symbol mm meters 0.039 inches in m meters 1.09 yards yd km kilometers 0.621 miles mi mm ² square millimeters 0.0016 square feet ft ² m ² square meters 1.195 square gare yards yd ² ha hectares 2.47 acres acr km ² Square kilometers 0.386 square miles mi ² ML milliliters 0.034 fluid ounces oz oz L iters 0.035 ounces oz oz MA	Т				Mg (or "t")	
or (F-32)/1.8 FORCE and PRESSURE or STRESS lbf poundforce per square inch 6.89 kilopascals kPa APPROXIMATE CONVERSIONS FROM SI UNITS Symbol When You Know Multiply By To Find Symbol Symbol mm millimeters 0.039 inches in meters 0.621 miles mi Meters 0.0016 square millimeters 0.0016 square inches in ² mm² square meters 0.0016 square inches in ² mm² square meters 0.0016 square inches in ² mm² square meters 1.0764 square inches in ² mm² square meters 0.0016 square inches in ² mm² square meters <th cols<="" td=""><td></td><td></td><td></td><td></td><td></td></th>	<td></td> <td></td> <td></td> <td></td> <td></td>					
FORCE and PRESSURE or STRESS Ibf poundforce 4.45 newtons N Ibf/in ² poundforce per square inch 6.89 kilopascals kPa APPROXIMATE CONVERSIONS FROM SI UNITS Symbol When You Know Multiply By To Find Symbol mm millimeters 0.039 inches in m meters 3.28 feet ft m meters 0.621 miles mi mm square millimeters 0.0016 square inches in ² mm ² square meters 1.095 square feet ft ² m ² square meters 1.955 square square square gt ² next O.034 fluid ounces oz oz m ³ cubic meters 0.386 square miles mi ² maillimeters 0.264 gallons gal gal m ³ cubic meters 3.307 cubic feet ft ³ m ³ cubic meters 1.307 cubic feet ft ³	°F	Fahrenheit		Celsius	°C	
Ibf poundforce 4.45 newtons N Ibf/in ² poundforce per square inch 6.89 kilopascals kPa APPROXIMATE CONVERSIONS FROM SI UNITS Symbol When You Know Multiply By To Find Symbol mm millimeters 0.039 inches in m meters 3.28 feet ft m meters 1.09 yards yd km kilometers 0.0016 square inches in ² m ² square meters 1.0764 square inches in ² m ² square meters 1.195 square guare mills yd ² ha hectares 2.47 acres ac km ² Square kilometers 0.336 square milles mi ² mL milliliters 0.034 fluid ounces oz l Ubic meters 35.314 cubic feet ft ³ m ³ cubic meters 1.307 cubic feet ft ³ m ³ cubic meters 2.202 pounds lb MG or "t") megarams (or "metric ton") 1.103 short tons (2000lb) T						
Ibf/in2poundforce per square inch6.89kilopascalskPaAPPROXIMATE CONVERSIONS FROM SI UNITSSymbolWhen You KnowMultiply ByTo FindSymbolmmmillimeters0.039inchesinmmeters3.28feetftmmeters0.039inchesinmmeters0.039inchesinmmeters0.039inchesinmmeters0.021milesmilesmmeters0.0016square inchesin²mm²square meters10.764square feetft²m²square meters1.195square yardsyd²hahectares2.47acresacrhahectares0.034fluid ouncesozm1milliliters0.034fluid ouncesozLliters0.035ouncesozggrams0.035ouncesozggrams0.035ouncesozggrams0.035ouncesozggrams0.035ouncesozggrams0.035ouncesozggrams0.035ouncesozggrams0.035ouncesozggrams0.035ouncesozggrams0.035ouncesozggrams0.035ouncesoz						
APPROXIMATE CONVERSIONS FROM SI UNITSSymbolWhen You KnowMultiply ByTo FindSymbolmmmillimeters0.039inchesinmmeters3.28feetftmmeters1.09yardsydkmkilometers0.621milesmilmm2square millimeters0.0016square inchesin²m2square meters1.0764square feetft²m2square meters1.195square yardsyd²hahectares2.47accresackm2Square kilometers0.386square milesmi²m1milliliters0.034fluid ouncesozLliters0.264gallonsgalm3cubic meters1.307cubic feetft³m3cubic meters1.307cubic yardsyd³ggrams0.035ouncesozkilograms2.202poundslbbMg (or "t")megagrams (or "metric ton")1.103short tons (2000lb)TTEMPERATURE (exact degrees)Celsius1.8C+32Fahrenheit°F						
SymbolWhen You KnowMultiply ByTo FindSymbolmmmillimeters0.039inchesinmmeters3.28feetftmmeters3.28feetftmmeters1.09yardsydkmkilometers0.621milesmimm²square millimeters0.0016square inchesin²m²square meters10.764square feetft²m²square meters1.195square yardsyd²hahectares2.47acresackm²Square kilometers0.386square milesmi²Square kilometers0.324fluid ouncesozzLliters0.034fluid ouncesozzLliters0.035ouncesozzggrams0.035ouncesozzggrams0.035ouncesozzkgkilograms2.202poundslbMMg (or "t")megagrams (or "metric ton")1.103short tons (2000lb)TTEMPERATURE (exact degrees)°CCelsius1.8C+32Fahrenheit°F	lbf/in ²				kPa	
LENGTHmmmillimeters0.039inchesinmmeters3.28feetftmmeters1.09yardsydkmkilometers0.621milesmimm²square millimeters0.0016square inchesin²m²square meters10.764square feetft²m²square meters1.195square yardsyd²hahectares2.47acresackm²Square kilometers0.386square milesmi²VOLUMEmi²VOLUMEmi²m3cubic meters35.314cubic feetft³m³cubic meters1.307cubic squaresyd³ggrams0.035ouncesozkgkilograms2.202poundslbMg (or "t")megagrams (or "metric ton")1.103short tons (2000lb)TTEMPERATURE (exact degrees)°CCelsius1.8C+32Fahrenheit°F						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Symbol	When You Know	Multiply By	To Find	Symbol	
mmeters3.28feetftmmeters1.09yardsydkmkilometers0.621milesmiAREAmm²square millimeters0.0016square inchesin²m²square meters10.764square feetft²m²square meters1.195square yardsyd²hahectares2.47acresackm²Square kilometers0.386square milesmi²VOLUMEVOLUMEmi²mLmilliliters0.264gallonsgalm³cubic meters35.314cubic feetft³m³cubic meters1.307cubic yardsyd³ggrams0.035ouncesozkgkilograms2.202poundslbMg (or "t")megagrams (or "metric ton")1.103short tons (2000lb)TTEMPERATURE (exact degrees)°CCelsius1.8C+32Fahrenheit°F			LENGTH			
mmeters1.09yardsydkmkilometers0.621milesmimm²square millimeters0.0016square inchesin²m²square meters10.764square feetft²m²square meters1.195square yardsyd²hahectares2.47acresackm²Square kilometers0.386square milesmi²VOLUMEVOLUMEmi²mLmilliliters0.034fluid ouncesozLliters0.264gallonsgalm³cubic meters35.314cubic feetft³m³cubic meters1.307cubic yardsyd³ggrams0.035ouncesozkgkilograms2.202poundslbMg (or "t")megagrams (or "metric ton")1.103short tons (2000lb)TTEMPERATURE (exact degrees)°CCelsius1.8C+32Fahrenheit°F	mm	millimeters	0.039	inches	in	
kmkilometers0.621milesmiAREAmm²square millimeters0.0016square inchesin²m²square meters10.764square feetft²m²square meters1.195square yardsyd²hahectares2.47acresackm²Square kilometers0.386square milesmi²VOLUMEmLmilliliters0.034fluid ouncesozLliters0.264gallonsgalm³cubic meters35.314cubic feetft³m³cubic meters1.307cubic yardsyd³ggrams0.035ouncesozkgkilograms2.202poundslbMg (or "t")megagrams (or "metric ton")1.103short tons (2000lb)TTEMPERATURE (exact degrees)°CCelsius1.8C+32Fahrenheit°F	m	meters	3.28	feet	ft	
AREAmm²square millimeters0.0016square inchesin²m²square meters10.764square feetft²m²square meters1.195square yardsyd²hahectares2.47acresackm²Square kilometers0.386square milesmi²mLmilliliters0.034fluid ouncesozLliters0.264gallonsgalm³cubic meters35.314cubic feetft³m³cubic meters1.307cubic yardsyd³MASSggrams0.035ouncesozkgkilograms2.202poundslbMg (or "t")megagrams (or "metric ton")1.103short tons (2000lb)TTEMPERATURE (exact degrees)°CCelsius1.8C+32Fahrenheit°F	m	meters		yards	yd	
mm²square millimeters0.0016square inchesin²m²square meters10.764square feetft²m²square meters1.195square yardsyd²hahectares2.47acresackm²Square kilometers0.386square milesmi²mLmilliliters0.034fluid ouncesozLliters0.264gallonsgalm³cubic meters35.314cubic feetft³m³cubic meters1.307cubic yardsyd³ggrams0.035ouncesozkgkilograms2.202poundslbMg (or "t")megagrams (or "metric ton")1.103short tons (2000lb)TTEMPERATURE (exact degrees)°CCelsius1.8C+32Fahrenheit°F	km	kilometers		miles	mi	
m²square meters10.764square feetft²m²square meters1.195square yardsyd²hahectares2.47acresackm²Square kilometers0.386square milesmi²mLmilliliters0.034fluid ouncesozLliters0.264gallonsgalm³cubic meters35.314cubic feetft³m³cubic meters1.307cubic yardsyd³MASSggrams0.035ouncesozkgkilograms2.202poundslbMg (or "t")megagrams (or "metric ton")1.103short tons (2000lb)TTEMPERATURE (exact degrees)°CCelsius1.8C+32Fahrenheit°F						
m²square meters1.195square yardsyd²hahectares2.47acresackm²Square kilometers0.386square milesmi²mLmilliliters0.034fluid ouncesozLliters0.264gallonsgalm³cubic meters35.314cubic feetft³m³cubic meters1.307cubic yardsyd³MASSggrams0.035ouncesozkgkilograms2.202poundslbMg (or "t")megagrams (or "metric ton")1.103short tons (2000lb)TTEMPERATURE (exact degrees)°CCelsius1.8C+32Fahrenheit°F		•				
hahectares2.47acresackm²Square kilometers0.386square milesmi²mLmilliliters0.034fluid ouncesozLliters0.264gallonsgalm³cubic meters35.314cubic feetft³m³cubic meters1.307cubic yardsyd³MASSggrams0.035ouncesozkgkilograms2.202poundslbMg (or "t")megagrams (or "metric ton")1.103short tons (2000lb)TTEMPERATURE (exact degrees)°CCelsius1.8C+32Fahrenheit°F		•				
km²Square kilometers0.386square milesmi²mLmilliliters0.034fluid ouncesozLliters0.264gallonsgalm³cubic meters35.314cubic feetft³m³cubic meters1.307cubic yardsyd³MASSggrams0.035ouncesozkgkilograms2.202poundslbMg (or "t")megagrams (or "metric ton")1.103short tons (2000lb)TTEMPERATURE (exact degrees)°CCelsius1.8C+32Fahrenheit°F				square yards	yd²	
VOLUMEmLmilliliters0.034fluid ouncesozLliters0.264gallonsgalm³cubic meters35.314cubic feetft³m³cubic meters1.307cubic yardsyd³MASSggrams0.035ouncesozkgkilograms2.202poundslbMg (or "t")megagrams (or "metric ton")1.103short tons (2000lb)TTEMPERATURE (exact degrees)°CCelsius1.8C+32Fahrenheit°F					ac	
mLmilliliters0.034fluid ouncesozLliters0.264gallonsgalm³cubic meters35.314cubic feetft³m³cubic meters1.307cubic yardsyd³MASSggrams0.035ouncesozkgkilograms2.202poundslbMg (or "t")megagrams (or "metric ton")1.103short tons (2000lb)TTEMPERATURE (exact degrees)°CCelsius1.8C+32Fahrenheit°F	km ²	Square kilometers		square miles	mi ²	
Lliters0.264gallonsgalm³cubic meters35.314cubic feetft³m³cubic meters1.307cubic yardsyd³MASSggrams0.035ouncesozkgkilograms2.202poundslbMg (or "t")megagrams (or "metric ton")1.103short tons (2000lb)TTEMPERATURE (exact degrees)°CCelsius1.8C+32Fahrenheit°F						
m³ cubic meters 35.314 cubic feet ft³ m³ cubic meters 1.307 cubic yards yd³ MASS g grams 0.035 ounces oz kg kilograms 2.202 pounds lb Mg (or "t") megagrams (or "metric ton") 1.103 short tons (2000lb) T TEMPERATURE (exact degrees) °C Celsius 1.8C+32 Fahrenheit °F	mL					
m³ cubic meters 1.307 cubic yards yd³ mASS mASS mass ounces oz g grams 0.035 ounces oz kg kilograms 2.202 pounds lb Mg (or "t") megagrams (or "metric ton") 1.103 short tons (2000lb) T TEMPERATURE (exact degrees) °C Celsius 1.8C+32 Fahrenheit °F						
g grams 0.035 ounces oz kg kilograms 2.202 pounds lb Mg (or "t") megagrams (or "metric ton") 1.103 short tons (2000lb) T TEMPERATURE (exact degrees) °C Celsius 1.8C+32 Fahrenheit °F						
ggrams0.035ouncesozkgkilograms2.202poundslbMg (or "t")megagrams (or "metric ton")1.103short tons (2000lb)TTEMPERATURE (exact degrees)°CCelsius1.8C+32Fahrenheit°F	m³	cubic meters		cubic yards	yd ³	
kgkilograms2.202poundsIbMg (or "t")megagrams (or "metric ton")1.103short tons (2000lb)TTEMPERATURE (exact degrees)°CCelsius1.8C+32Fahrenheit°F						
Mg (or "t") megagrams (or "metric ton") 1.103 short tons (2000lb) T TEMPERATURE (exact degrees) °C Celsius 1.8C+32 Fahrenheit °F	g	•				
TEMPERATURE (exact degrees)°CCelsius1.8C+32Fahrenheit°F				1		
°C Celsius 1.8C+32 Fahrenheit °F	Mg (or "t")				1	
	°C				°F	
FORCE and PRESSURE or STRESS		FOR				
N newtons 0.225 poundforce lbf	Ν	newtons	0.225	poundforce		
kPa kilopascals 0.145 poundforce per square inch Ib/in ²	kPa	kilopascals	0.145	poundforce per square inch	lb/in ²	

*SI is the symbol for the International System of Units

ACKNOWLEDGMENTS

This research project was performed under a pooled fund program between the following States and Agencies. The authors acknowledge and appreciate their guidance and assistance.

Roadside Safety Research Pooled Fund Committee

Revised February 2020

<u>ALABAMA</u>

Stanley (Stan) C. Biddick, P.E.

Assistant State Design Engineer Design Bureau, Final Design Division Alabama Dept. of Transportation 1409 Coliseum Boulevard, T-205 Montgomery, AL 36110 (334) 242-6833 biddicks@dot.state.al.us

Steven E. Walker

Alabama Dept. of Transportation (334) 242-6488 walkers@dot.state.al.us

<u>ALASKA</u>

Jeff C. Jeffers, P.E. Statewide Standard Specifications Alaska Depart. of Transportation & Public Facilities 3132 Channel Drive P.O. Box 112500 Juneau, AK 99811-2500 (907) 465-8962 Jeff.Jeffers@alaska.gov

CALIFORNIA

Bob Meline, P.E. Caltrans Office of Materials and Infrastructure Division of Research and Innovation 5900 Folsom Blvd Sacramento, CA 95819 (916) 227-7031 Bob.Meline@dot.ca.gov

John Jewell, P.E.

Senior Crash Testing Engineer Office of Safety Innovation & Cooperative Research (916) 227-5824 John Jewell@dot.ca.gov

<u>COLORADO</u>

Joshua Keith, P.E. Standards & Specifications Engineer Project Development Branch Colorado Dept. of Transporation 4201 E Arkansas Ave, 4th Floor Denver, CO 80222 (303) 757-9021 Josh.Keith@state.co.us

00311.1011100.51810.00.00

Joshua Palmer, P.E. Guardrail Engineer Colorado Dept. of Transportation 2829 W. Howard Pl Denver, CO 80204 (303) 757-9229 Joshua.j.palmer@state.co.us

Chih Shawn Yu (303) 757-9474 Shawn.yu@state.co.us

Andrew Pott, P.E. II Staff Bridge (303) 512-4020

(303) 512-4020 <u>Andrew.pott@state.co.us</u>

CONNECTICUT

David Kilpatrick State of Connecticut Depart. of Transportation 2800 Berlin Turnpike Newington, CT 06131-7546 (806) 594-3288 David.Kilpatrick@ct.gov

DELAWARE

Mark Buckalew, P.E.

Safety Program Manager Delaware Depart. of Transportation 169 Brick Store Landing Road Smyrna, DE 19977 (302) 659-4073 Mark.Buckalew@state.de.us

FLORIDA

Derwood C. Sheppard, Jr., P.E.

Standard Plans Publication Engineer Florida Depart. of Transportation Roadway Design Office 605 Suwannee Street, MS-32 Tallahassee, FL 32399-0450 (850) 414-4334 Derwood.Sheppard@dot.state.fl.us

IDAHO

Kevin Sablan

Design and Traffic Engineer Idaho Transportation Department P. O. Box 7129 Boise, ID 83707-1129 (208) 334-8558 Kevin.Sablan@ITD.idaho.gov

Rick Jensen, P.E.

ITD Bridge Design (208) 334-8589 <u>Rick.jensen@itd.idaho.gov</u>

Shanon M. Murgoitio, P.E. Engineer Manager 1 ITD Bridge Division (208) 334-8589 Shanon.murgoitio@ird.idaho.gov

Marc Danley, P.E.

Technical Engineer (208) 334-8558 Marc.danley@itd.idaho.gov

ILLINOIS

Martha A. Brown, P.E.

Safety Design Bureau Chief Bureau of Safety Programs and Engineering Illinois Depart. of Transportation 2300 Dirksen Parkway, Room 005 Springfield, IL 62764 (217) 785-3034 <u>Martha.A.Brown@illinois.gov</u>

Tim Craven Tim.craven@illinois.gov

Filberto (Fil) Sotelo Safety Evaluation Engineer (217) 785-5678 Filiberto.Sotelo@illinois.gov

Jon M. McCormick Safety Policy & Initiatives Engineer (217) 785-5678

Jon.M.McCormick@illinois.gov

LOUISIANA

Chris Guidry Bridge Manager Louisiana Transportation Center Bridge & Structural Design Section P.O. Box 94245 Baton Rouge, LA 79084-9245 (225) 379-1933 Chris.Guidry@la.gov

Kurt Brauner, P.E.

Bridge Engineer Manager Louisiana Transportation Center 1201 Capital Road, Suite 605G Baton Rouge, LA 70802 (225) 379-1933 Kurt.Brauner@la.gov

Brian Allen, P.E. Bridge Design Engineer (225) 379-1840 Brian.allen@la.gov

Steve Mazur Bridge Design (225) 379-1094 Steven.Mazur@la.gov

MARYLAND

Jeff Robert Division Chief Bridge Design Division Office of Structures 707 N. Calvert Street, Mailstop C-203 Baltimore, MD 21202 (410) 545-8327 jrobert@sha.state.md.us

Sharon D. Hawkins

Project Manager Office of Policy and Research, Research Division 707 N. Calvert Street, Mailstop C-412 Baltimore, MD 21202 (410) 545-2920 Shawkins2@sha.state.md.us

MASSACHUSETTS

Alex Bardow Director of Bridges and Structure Massachusetts Depart. of Transportation 10 Park Plaza, Room 6430 Boston, MA 02116 (517) 335-9430 Alexander.Bardow@state.ma.us

James Danila Assistant State Traffic Engineer (857) 368-9640 James.Danila@state.ma.us

MICHIGAN

Carlos Torres, P.E. Crash Barrier Engineer Geometric Design Unit, Design Division Michigan Depart. of Transportation P. O. Box 30050 Lansing, MI 48909 (517) 335-2852 TorresC@michigan.gov

<u>MINNESOTA</u>

Michael Elle, P.E. Design Standards Engineer Minnesota Depart.of Transportation 395 John Ireland Blvd, MS 696 St. Paul, MN 55155-1899 (651) 366-4622 <u>Michael.Elle@state.mn.us</u>

Michelle Moser Assistant Design Standards Engineer (651) 366-4708 <u>Michelle.Moser@state.mn.us</u>

MISSOURI

Sarah Kleinschmit, P.E. Policy and Innovations Engineer, Missouri Department of Transportation P.O. Box 270 Jefferson City, MO 65102 (573) 751-7412 sarah.kleinschmit@modot.mo.gov

MISSISSIPPI

Heath T. Patterson, P.E. MDOT-State Maintenance Engineer Emergency Coordinating Officer 401 N. West Street Jackson, MS 39201 (601) 359-7113 hpatterson@mdot.ms.gov

NEW MEXICO

David Quintana, P.E. Project Development Engineer P.O. Box 1149, Room 203 Santa Fe, NM 87504-1149 (505) 827-1635 David guintana@state.nm.us

<u>OHIO</u>

Don P. Fisher, P.E. Ohio Depart. of Transportation 1980 West Broad Street Mail Stop 1230 Columbus, OH 43223 (614) 387-6214 Don.fisher@dot.ohio.gov

<u>OKLAHOMA</u>

Hebret Bokhru, P.E.

Engineering Manager Traffic Engineering Division Oklahoma Depart. of Transportation 200 NE 21st Street, 2-A7 Oklahoma City, OK 73105-3204 Office (direct): (405) 522-5373 Office (Traffic Div.): (405) 521-2861 Hebret.Bokhru@odot.org

OREGON

Christopher Henson

Senior Roadside Design Engineer Oregon Depart. of Transportation Technical Service Branch 4040 Fairview Industrial Drive, SE Salem, OR 97302-1142 (503) 986-3561 Christopher.S.Henson@odot.state.or.us

PENNSYLVANIA

Guozhou Li Pennsylvania DOT GuLi@pa.gov

Hassan Raza

Standards & Criteria Engineer Pennsylvania Depart. of Transportation Bureau of Project Delivery 400 North Street, 7th Floor Harrisburg, PA 17120 (717) 783-5110 HRaza@pa.gov

TENNESSEE

Ali Hangul, P.E., CPESC

Assistant Director Tennessee Depart. of Transportation Roadway Design & Office of Aerial Surveys James K. Polk State Office Bldg. 505 Deaderick Street Nashville, TN 37243 (615) 741-0840 Ali.Hangul@tn.gov

<u>TEXAS</u>

Chris Lindsey Transportation Engineer Design Division Texas Department of Transportation 125 East 11th Street Austin, TX 78701-2483 (512) 416-2750 Christopher.Lindsey@txdot.gov

Taya Retterer P.E. TXDOT Bridge Standards Engineer (512) 416-2719

Taya.Retterer@txdot.gov

Wade Odell

Transportation Engineer Research & Technology Implementation 200 E. Riverside Drive Austin, TX 78704 <u>Wade.Odell@txdot.gov</u>

<u>UTAH</u>

Shawn Debenham

Traffic and Safety Division Utah Depart. of Transportation 4501 South 2700 West PO Box 143200 Salt Lake City UT 84114-3200 (801) 965-4590 <u>sdebenham@utah.gov</u>

WASHINGTON

John Donahue Design Policy and Analysis Manager Washington State Dept. of Transportation Development Division P.O. Box 47329 Olympia, WA 98504-7246 (360) 704-6381 donahjo@wsdot.wa.gov

Mustafa Mohamedali

Assistant Research Project Manager P.O. Box 47372 Olympia, WA 98504-7372 (360) 704-6307 mohamem@wsdot.wa.gov

WASHINGTON (continued)

Anne Freeman

Program Administrator Research & Library Services (306) 705-7945 Freeann@wsdot.gov

WEST VIRGINIA

Donna J. Hardy, P.E.

Safety Programs Engineer West Virginia Depart. of Transportation – Traffic Engineering Building 5, Room A-550 1900 Kanawha Blvd E. Charleston, WV 25305-0430 (304) 558-9576 Donna.J.Hardy@wv.gov

Ted Whitmore

Traffic Services Engineer (304) 558-9468 Ted.J.Whitmore@wv.gov

Joe Hall, P.E., P.S.

Division of Highways & Engineering Technical Policy QA/QC Engineer Value Engineering Coordinator 1334 Smith Street Charleston, WV 25305-0430 (304) 558-9733 Joe.H.Hall@wv.gov

WISCONSIN

Erik Emerson, P.E.

Standards Development Engineer – Roadside Design Wisconsin Department of Transportation Bureau of Project Development 4802 Sheboygan Avenue, Room 651 P. O. Box 7916 Madison, WI 53707-7916 (608) 266-2842 Erik.Emerson@wi.gov

<u>CANADA – ONTARIO</u>

Kenneth Shannon, P. Eng.

Senior Engineer, Highway Design (A) Ontario Ministry of Transportation 301 St. Paul Street St. Catharines, ON L2R 7R4 CANADA (904) 704-3106 Kenneth.Shannon@ontario.ca

FEDERAL HIGHWAY ADMINISTRATION (FHWA)

WebSite: <u>safety.fhwa.dot.gov</u>

Richard B. (Dick) Albin, P.E.

Safety Engineer FHWA Resource Center Safety & Design Technical Services Team 711 S. Capital Olympia, WA 98501 (303) 550-8804 Dick.Albin@dot.gov

Eduardo Arispe

Research Highway Safety Specialist U.S. Department of Transportation Federal Highway Administration Turner-Fairbank Highway Research Center Mail Code: HRDS-10 6300 Georgetown Pike McLean, VA 22101 (202) 493-3291 Eduardo.arispe@dot.gov

Greg Schertz, P.E.

FHWA – Federal Lands Highway Division Safety Discipline Champion 12300 West Dakota Ave. Ste. 210 Lakewood, CO 80228 (720)-963-3764 Greg.Schertz@dot.gov

Christine Black

Highway Safety Engineer Central Federal Lands Highway Division 12300 West Dakota Ave. Lakewood, CO 80228 (720) 963-3662 <u>Christine.black@dot.gov</u>

TEXAS A&M TRANSPORTATION

INSTITUTE (TTI)

WebSite: <u>tti.tamu.edu</u> <u>www.roadsidepooledfund.org</u>

D. Lance Bullard, Jr., P.E.

Senior Research Engineer Roadside Safety & Physical Security Div. Texas A&M Transportation Institute 3135 TAMU College Station, TX 77843-3135 (979) 317-2855 L-Bullard@tti.tamu.edu

Roger P. Bligh, Ph.D., P.E.

Senior Research Engineer (979) 317-2703 <u>R-Bligh@tti.tamu.edu</u>

Chiara Silvestri Dobrovolny, Ph.D.

Associate Research Scientist (979) 317-2687 <u>C-Silvestri@tti.tamu.edu</u>

REPORT REVIEWED BY:

Glenn Schroeder, Research Specialist	Ken Reeves, Research Specialist
Drafting & Reporting	Electronics Instrumentation
Adam Mayer, Research Specialist	Richard Badillo, Research Specialist
Construction	Photographic Instrumentation
Scott Dobrovolny, Research Specialist	Wanda L. Menges, Research Specialist
Mechanical Instrumentation	Research Evaluation and Reporting
Bill L. Griffith, Research Specialist	Darrell L. Kuhn, P.E., Research Specialist
Deputy Quality Manager	Quality Manager
Matthew N. Robinson, Research Specialist	Akram Abu-Odeh, Ph.D.
Test Facility Manager & Technical Manager	Research Scientist

Discla	imer	ii
Techn	ical Report Documentation Page	iii
	IOWLEDGMENTS	
Report	t Authorization	x
Table	of Contents	xiii
List of	Figures	xiv
List of	Tables	xiv
CHAP	TER 1. INTRODUCTION	1
1.1	Objectives	
1.2	Background	
1.3	Generic Test Matrix according to MASH	
1.4	FMVSS	
1.5	Alternate Testing Methods – NCAP and IIHS	
1.6	MASH vs FMVSS	
CHAP	TER 2. SITE CASE SURVEY	
2.1	Development and Distribution of the Survey	
2.2	Survey Results	
CHAP	TER 3. MINIMUM BARRIER LENGTH	
3.1	Length of Crash Cushion	
3.2	Theoretical Calculations for Minimum Barrier Length	
3.3	Theoretical Barrier Minimum Length	
3.3	Length of Crash Cushions currently in use	
CHAP	TER 4. DEVELOPMENT OF TEST MATRIX	
4.1	Specific Site Cases	
4.2	Proposed Test Matrix	
CHAP	TER 5. CONCLUSION AND RECOMMENDATIONS	
5.1	Recommended Test Matrix	
5.2	Recommended Minimum Barrier Length	
5.3	RecommendATION FOR FUTUR research	
	RENCES	
APPE	NDIX A. SPECIFIC SITE CASES – FEASIBLE AREA FOR	
SHO	ORT RADIUS GUARDRAIL	
Site	Case - 1	
Site	Case - 2	
APPE	NDIX B. THE SURVEY	
2.1	Scope of the Survey	
2.2	Results from the Survey	
APPE	NDIX C. SPECIFIC SITE CASES	

Table of Contents

List of Figures

Figure 1. FMVSS Standards Overview	10
Figure 2. Specific Site Case Example	16
Figure 3. Small Car Theoretical Impact Stages.	
Figure 4. Intermediate Car Theoretical Impact Stages.	
Figure 5. Pickup Truck Theoretical Impact Stages	
Figure 6. Proposed Test Matrix for Unidirectional Traffic in Opposite Direction as System	25
Figure 7. Proposed Flow Chart to Determine Required Testing	27

List of Tables

Table 1. Terminal and Crash Cushion MASH Test Matrix.	4
Table 2. Summary of FMVS, NCAP, and IIHS Safety Standards	11
Table 3. Generic Site Cases Survey Rankings	13
Table 4. Specific Site Case Example.	16
Table 5. Description of Variables for Theoretical Barrier Minimum	
Length Calculation	19
Table 6. Summary of Theoretical Barrier Minimum Length Calculations	20
Table 7. Comparison of Existing Barrier Lengths and Calculated	
Theoretical Minimum Barrier Lengths	21
Table 8. Proposed Full Test Matrix	24
Table 9. Recommended Minimum Barrier Lengths.	28

CHAPTER 1. INTRODUCTION

A general problem occurs at many bridge locations along highways where there is insufficient right-of-way (ROW) to shield the end of a bridge parapet from errant vehicles. These conflicts occur when existing driveways, roads, or other objects have a short offset distance from the end of the bridge parapet. It is not unusual to have less than a 15-ft length between the end of the bridge parapet and the conflict. Solutions to this problem have included using short radius guardrail, a shortened guardrail section, or a crash attenuator. Typically, these solutions are not practical for the site location, are not cost effective, or crashworthy solutions do not fit within the available space.

The scope of this research study was to investigate extreme site constraints at bridge ends encountered by State Departments of Transportation (DOTs). A categorization methodology will be provided for determining proper impact conditions and evaluation criteria for future design concepts. The researchers will supply impact conditions and evaluation criteria for future hardware designs for roadside safety application to be applied at extreme sites at bridge ends.

1.1 **OBJECTIVES**

The scope of this research study was to investigate extreme site constraints at bridge ends encountered by State DOTs. A categorization methodology is provided for determining proper impact conditions and evaluation criteria for future design concepts. The researchers supply impact conditions and evaluation criteria for future hardware designs for roadside safety applications to be applied at extreme sites at bridge ends. This project was not aimed at developing a hardware solution for these site conditions. This study's aim was to develop criteria for the development of future hardware solutions. The test matrix presented as a solution was based on data collected from previous research efforts. The resulting proposed criteria allows for the development of future products that are both crashworthy and that fit within the site-specific conditions.

The research also involved developing a survey to identify critical case scenarios that could be further investigated. The survey aimed to collect data from all the State DOTs to help identify the most common critical case scenarios observed in different states.

Finally, a comparison between the evaluation criteria in American Association of State Highway and Transportation Officials (AASHTO) *Manual for Assessing Safety Hardware* (MASH) and Federal Motor Vehicle Safety Standards (FMVSS) was discussed (1, 2). This evaluation was utilized when site specific conditions make MASH compliance impossible. The study identifies the cases where use of MASH is impossible and instead applies evaluation criteria in alignment with FMVSS.

1.2 BACKGROUND

Typically, a rigid longitudinal barrier is used to contain errant traffic at a highway bridge location. These rigid longitudinal barriers present an obstacle at their terminations for oncoming traffic. There are several methods designers use to alleviate these obstacles. Often a guardrail terminal system is used as an approach rail to the bridge location; however, a general problem occurs at many bridge locations along highways where the required length-of-need (LON) for the bridge approach rail cannot be met. The length of need is defined as the length needed for a

traffic barrier typically used to protect and shield fixed features or hazards. A typical equation used to determine the length-of-need is the following:

$$x = \frac{L_H + \frac{b}{a}L_1 - L_2}{\frac{b}{a} + \frac{L_H}{L_R}}$$

where: L_H represents lateral extent of hazard, L_R represents the runout length, L_1 represents the length of tangent section of rail advance of hazard, L_2 represents the distance from edge of pavement to tangent section of guardrail, *b/a* represents the flare rate of guard rail. Alternate solutions to these obstacles include using short radius guardrail, a shortened guardrail section, or a crash attenuator. Historically, short radius guardrails have been used at most locations as crash attenuators might not always represent a feasible or economical solution.

Crash cushions or impact attenuators are devices used to shield and protect fixed features. They are typically employed in areas where use of a long barrier installation is not feasible. When impacted by the errant vehicle, crash cushions absorb the impacting energy by deformation to decelerate the vehicle to a stop, or to redirect the vehicle.

There are two main types of classifications for crash cushions: temporary and permanent. Temporary crash cushions are generally employed in work zone areas. Crash cushions can also be classified as redirective or non-redirective, gating or non-gating, and self-recoverable or non-self-recoverable. Redirective crash cushions absorb the kinetic energy of the impacting vehicle and deflect the vehicle back towards the roadway. On the contrary, non-redirective crash cushions do not have this ability. Instead, non-redirective crash cushions allow the vehicles to penetrate the system while at the same time reducing the vehicle's speed. Gating crash cushions allow the vehicle to penetrate through when outside the LON. In contrast, non-gating crash cushions do not allow penetration and have the capability to redirect an errant vehicle along its entire length. Self-recoverable crash cushions are able to restore themselves with little or no maintenance after an impact. Crash cushions are selected based on these classifications as well as their reusability.

Several studies and tests have been conducted by Southwest Research Institute (SwRI), Midwest Roadside Safety Facility (MwRSF), and Texas A&M Transportation Institute (TTI) on various short radius guardrail systems (3). These were evaluated under multiple performance criteria including American Association of State Highway and Transportation Officials (AASHTO) 1989 *Guide Specification for Bridge Railings*, National Cooperative Highway Research Program (*NCHRP*) *Report 230*, and *NCHRP Report 350* (4, 5, 6).

Silvestri et al. conducted a research study to identify the best practices used to alleviate problems where length-of-need requirements for bridge approach rails cannot be met (7). The guide document was developed through a literature review and survey of State DOTs. The survey addressed data concerning the following: practices or standards for bridge barriers when LON cannot be met, practice variation according to design speed, different types of crash cushions used, and installation of a short radius guardrail in front of a slope.

Some State DOTs prefer to relocate the obstacle/drive access to a point beyond the proposed length of need. When that is not feasible, DOTs have different preferences for how to shield the obstacle, which includes use of short radius guardrail or crash cushions, but Wood Post Controlled Release Terminal (Alaska DOT), T-Intersection or adjustment of the LON equation (Louisiana DOT), and nested thrie beam transition from concrete bridge rail end block, then attachment of short radius rail as necessary (South Dakota) are other options.

From the information collected, it appears that use of short radius guardrail practice at bridge locations where LON cannot be met is generally the option preferred by the DOTs. Although few States indicated that their DOTs make somewhat frequent use of crash cushions at bridge locations where LON cannot be met, their employment is very limited by other States due to their higher installation and maintenance costs. Also, use of crash cushions might be impractical and undesirable on road sections with multiple drives and side roads, considering their size.

Abu-Odeh has conducted a successful research study effort funded by the Texas Department of Transportation which aimed at developing a MASH TL-3 compliant short radius guardrail (8). This system was designed to address sites at which the intersecting roadway/driveway is greater than 35 ft from the bridge end and has a ROW distance of 30 ft or greater. This design provides a solution for a common safety problem. However, some sites may have space constraints that are too restrictive for the tested design, or possibly any *MASH* compliant design.

1.3 GENERIC TEST MATRIX ACCORDING TO MASH

MASH categorizes the evaluation criteria for a barrier system into two categories according to the type of system used and its length of need:

- 1. Longitudinal Barriers.
- 2. Terminals and Crash Cushions.

According to all the previous research conducted on short radius guardrail systems, the evaluation criteria have been based on Terminal and Redirective Crash Cushions. MASH recommends a total of nine tests to be performed for Terminals and Redirective Crash Cushions, and an additional six tests if the system qualifies as a Non-Redirective type crash cushion. These sets of tests are applicable for a symmetric system for vehicles impacting from a specific direction. If the system is asymmetric, it needs to be tested for vehicles impacting from the opposite direction as well, thus making the test matrix twice as large. Performing a large number of tests for one system would require a substantial amount of time and funds. Hence, it is practical to eliminate the tests that are not critical for the system. The evaluation to determine the usefulness of a test for the chosen system can be done using previous research data, the site constraints data for the specific site case, and engineering judgment.

Table 1 represents the full test matrix recommended in MASH that is applicable for a symmetric short radius guardrail system evaluated at TL-3:

Test Number	Vehicle	Impact Speed mph (km/h)	Impact Angle (deg.)	Impact Conditions	Test Description
3-30	1100C	62 (100)	0	e o DEG. y = OFFSET = W/4 TEST 30	Tests 30 and 40 are designed to examine the risk of vehicle instability, particularly for narrow terminal and crash cushion systems. Although Tests 32 and 42 often exhibit higher occupant risk criteria, the risk of vehicle instability is higher for Tests 30 and 40. Hence, Tests 30 and 40 should be conducted even if a system successfully passes Tests 32 or 42.
3-31	2270P	62 (100)	0	Terminal or Crash Cushion Length	For devices intended to decelerate the vehicle to a stop, this test is designed to evaluate the capacity of the feature to absorb sufficient energy to stop the 2270P vehicle in a safe and controlled manner. For gating systems, this test is intended to evaluate occupant risk and vehicle trajectory criteria during high-energy, head-on impacts. This test is conducted with the vehicle approaching parallel to the roadway with the center of the vehicle aligned with the centerline of the terminal or cushion. Again, the centerline of the device is defined as the center of resistance during end- on impacts.

Table 1. Terminal and Crash Cushion MASH Test Matrix.

Test Number	Vehicle	Impact Speed mph (km/h)	Impact Angle (deg.)	Impact Conditions	Test Description
3-32	1100C	62 (100)	5/15	Terminal or Crash Cushion Length Sector Sector Sec	This test is intended to examine the behavior of terminals and crash cushions during oblique impacts of the end or nose of the system. For most features, occupant risk and vehicle trajectory are the primary concerns. Note that the impact angle for this test should be selected for the range shown.
3-33	2270P	62 (100)	5/15	Terminal or Crash Cushion Length	This test is intended to examine the behavior of terminals and crash cushions during oblique impacts of the end or nose of the system. For most features, occupant risk and vehicle trajectory are the primary concerns. Note that the impact angle for this test should be selected for the range shown.
3-34	1100C	62 (100)	15	Terminal or Crisis Cushion Length Point (CP) Beginning of Length of Mead TEST 34 (100) 34 (100) 35 (100) 35 (100) 36 (1	Test 34 is intended to evaluate the impact performance of terminals and crash cushions at the critical impact point (CIP) where the behavior of these devices changes from gating or capturing to redirection. Vehicle trajectory and occupant risk are the primary concerns for this test. Criteria for selecting the CIP for post-and-beam terminal or crash cushion systems are presented in Section 2.3.3.1. Whenever practical, finite element analysis should be conducted to identify critical impact points for post- and-beam systems as well as other terminals and redirective crash cushions.

Table 1. Terminal and Crash Cushion MASH Test Matrix (Continued).

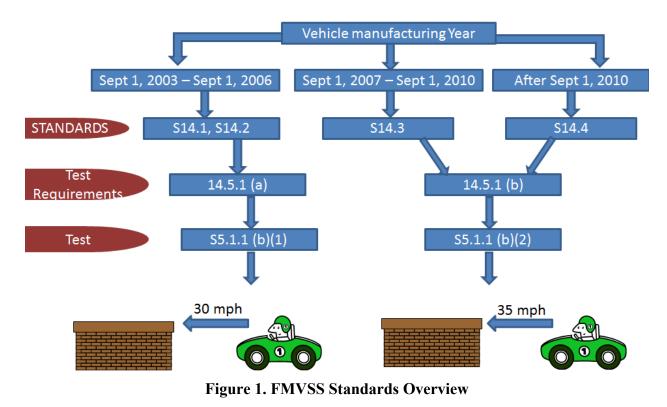
Test Number	Vehicle	Impact Speed mph (km/h)	Impact Angle (deg.)	Impact Conditions	Test Description
3-35	2270P	62 (100)	25	Terminal or Crash Cushion Length Gridbal Impact Point (CP) Beginning of Langth of Neural Distribution of CP 14 (15) 15	Test 35 examines the capacity of a terminal or crash cushion for containing and redirecting heavy passenger vehicles. For this test, a 2270P vehicle is directed into the system at the beginning of the length-of-need at an impact angle of 25 degrees. Note that, for non-gating crash cushions, the beginning of the length-of need should be very near the nose of the crash cushion. In this case, Test 35 should involve a vehicle impacting on the very end of the system where cushion behavior changes from capturing to redirective. Hence, for non- gating systems, the test is essentially a CIP impact with a light truck test vehicle.
3-36	2270P	62 (100)	25	Terminal or Crash Cushion Length Critical Impact Point (CIP) * 2 5 0 EG. * 2 5 0 EG. Normal Direction of Travel	This test is designed to examine the behavior of terminals and redirective crash cushions when attached to rigid barriers of other very stiff features. For this test, the 2270P test vehicle is directed into the terminal of the crash cushion at its CIP with respect to the transition of the backup structure. Note that some terminals, including most W- beam guardrail terminals, are not attached directly to a stiff barrier or backup structure. General guidelines for determining CIP locations for this test are included in section 2.3.3.3. Whenever possible, finite element analysis should be used to determine the CIP for Test 36.

Table 1. Terminal and Crash Cushion MASH Test Matrix (Continued).

Test Number	Vehicle	Impact Speed mph (km/h)	Impact Angle (deg.)	Impact Conditions	Test Description
3-37	2270P	62 (100)	25	Normal Direction of Travel Critical Impact Point (CIP) e e e e e e e e e e e e e e s DEG. of Tavel 0 e e s DEC. Normal Direction of Tavel TEST 37 (FOR MEDIAN DEVICE)	Test 37 examines the behavior of crash cushions and terminals during reverse-direction impacts. This test is recommended for any safety feature that will be placed within the clear zone of opposing traffic. This test involves a 2270P or 1100C vehicle striking the critical impact point (CIP) for reverse-direction impacts. CIP locations for reverse direction impacts vary greatly from one system to another, and a generalized system for identifying these locations has yet to be developed. Note that the configuration shown in figure 2.3 for Test 37 is intended for illustration purposes only and do not necessarily reflect the actual test configuration.
3-38	1500A	62 (100)	0	Terminal or Crash Cushion Length 9 = 0 DEG. OFFSET = 0 TESTS 31 AND 38	Tests 38 and 48 are intended to examine the performance of crash cushions and end terminals during impacts by mid-size vehicles. The concern is that attenuator staging can be tuned to meet the testing requirements for the small car and heavy pickup truck without adequately accommodating mid-sized vehicles. For these tests, the centerline of the test vehicle is aligned with the centerline of the test article.

 Table 1. Terminal and Crash Cushion MASH Test Matrix (Continued).

				ash Cushion MASH Test	· · ·
Test Number	Vehicle	Impact Speed mph (km/h)	Impact Angle (deg.)	Impact Conditions	Test Description
3-40	1100C	62 (100)	0	e=0 DEG. Y=OFFSET = W/4 TEST 40	Tests 30 and 40 are designed to examine the risk of vehicle instability, particularly for narrow terminal and crash cushion systems. Although Tests 32 and 42 often exhibit higher occupant risk criteria, the risk of vehicle instability is higher for Tests 30 and 40. Hence, Tests 30 and 40 should be conducted even if a system successfully passes Tests 32 or 42.
3-41	2270P	62 (100)	0	Image: second	For devices intended to decelerate the vehicle to a stop, this test is designed to evaluate the capacity of the feature to absorb sufficient energy to stop the 2270P vehicle in a safe and controlled manner. For gating systems, this test is intended to evaluate occupant risk and vehicle trajectory criteria during high-energy, head-on impacts. This test is conducted with the vehicle approaching parallel to the roadway with the center of the vehicle aligned with the centerline of the terminal or cushion. Again, the centerline of the device is defined as the center of resistance during end- on impacts.
3-42	1100C	62 (100)	5/15	e = 15 DEG. OFFSET = 0 TESTS 42 AND 43	This test is intended to examine the behavior of terminals and crash cushions during oblique impacts of the end or nose of the system. For most features, occupant risk and vehicle trajectory are the primary concerns. Note that the impact angle for these tests should be selected for the range shown.


 Table 1. Terminal and Crash Cushion MASH Test Matrix (Continued).

Test Number	Vehicle	Impact Speed mph (km/h)	Impact Angle (deg.)	Impact Conditions	Test Description
3-43	2270P	62 (100)	5/15	Hermer Director Hermer Director CFFSET=9 TESTS 42 AND 43	This test is intended to examine the behavior of terminals and crash cushions during oblique impacts of the end or nose of the system. For most features, occupant risk and vehicle trajectory are the primary concerns. Note that the impact angle for these tests should be selected for the range shown.
3-44	2270P	62 (100)	20	test 4	Test 44 is designed to evaluate the ability of a non-directive crash cushion to safely stop a large passenger vehicle in a side impact. For this test, the 2270P test vehicle is directed into the crash cushion at its CIP with respect to the transition to the backup structure. Note that non-redirective crash cushions are not designed to safely attenuate this impact and therefore occupant risk parameters, evaluation criteria H and I, are not among the recommended evaluation criteria. However, these values should be reported as a means for user agencies to estimate the potential risk of using non-redirective crash cushions. The impacting vehicle should remain stable and upright during the test. If a system truly has no redirective capacity, such as a sand inertial cushion, the centerline of the test vehicle should be directed at the corner of the shielded hazard as shown in figure 2-3B. however, if non-redirective crash cushions can be expected to provide some redirective capacity, general guidelines for determining CIP locations presented in section 2.3.3.3 for test 26 should be followed.

Table 1. Terminal and Crash Cushion MASH Test Matrix (Continued).

1.4 FMVSS

The FMVSS provides standards to ensure minimum safety performance for motor vehicles. FMVSS is a legislative directive by the National Highway Traffic Safety (NHTSA) and has been made mandatory for all the manufacturing companies to follow the standards. The evaluation criteria for FMVSS are based on an instrumented dummy considering a passive restraint system. Figure 1 provides a quick overview of the standards specified in FMVSS:

1.5 ALTERNATE TESTING METHODS – NCAP AND IIHS

Both the New Car Assessment Program (NCAP) and Insurance Institute for Highway Safety (IIHS) provide standards to measure the safety level of motor vehicles. Unlike FMVSS, NCAP and IIHS are not mandatory to be followed by the manufacturing companies. NCAP and IIHS rate the results for a particular vehicle rather than providing a pass/fail verdict. The intention here is to make it easier for the consumers to judge the safety of a vehicle. Table 2 summarizes the main differences between FMVSS, NCAP, and IIHS:

CRITERIA	FMVSS	NCAP	IIHS
Overview	Federal regulations specifying design, construction, performance, and durability requirements for motor vehicles and regulated safety-related components, systems, and design features.	Government car safety program tasked with evaluating new automobile designs for performance against various safety threats.	Evaluates two aspects of safety: Crashworthiness and crash avoidance and mitigation technology
Mandatory?	YES	NO	NO
Evaluation Method	Standards and Regulations	Star Ratings	Ratings
Impact Conditions	 35 mph – perpendicular to rigid barrier 	 35 mph – perpendicular to rigid barrier 	 35 mph – perpendicular to rigid barrier with 40% of total width impacting
Evaluation Criteria	 Occupant safety based on accelerations and force transmitted. Provisions for Motor Vehicle Safety Standards 	 Standards Procedures for vehicle measurements pre and post crash test Vehicle Intrusion, Crush, Velocity Occupant safety based on accelerations and force transmitted. 	 Ratings based on Overlap Front, Side Strength, Roof strength, Head restraints & seats, front crash prevention.
Pass/Fail Criteria	Maximum Limits specified for accelerations and forces, but none found for vehicle for a crash test	Maximum limits specified for accelerations and forces which are used for categorizing based on stars	Maximum limits specified for accelerations, forces which are used for categorizing based on stars.

1.6 MASH VS FMVSS

One of the main objectives of this project was to study the FMVSS evaluation criteria and compare them to the MASH criteria. To optimize the test matrix for implementation of the short radius guardrail, it is imperative to judge what evaluation criteria gives us the most feasible solution. Based on previous research and literature review, it appears that the evaluation criteria in MASH are more conservative as compared to FMVSS. Since the flail space model in MASH is based on an unrestrained occupant, it neglects the effects of the passive and active restraint systems such as seatbelts and air bags that are currently mandatory in all vehicles.

The use of an instrumented dummy while utilizing restraint systems will have a significant impact on the allowable occupant impact velocity (OIV). MASH currently limits the maximum OIV to be 40 ft. /sec, on which the required length of a guardrail is designed. However, if evaluation criteria from FMVSS are implemented, there is a reason to further increase the maximum OIV. This can reduce the minimum length requirements for a guardrail and help develop a solution for cases where the minimum LON requirements cannot be met according to MASH.

CHAPTER 2. SITE CASE SURVEY

2.1 **DEVELOPMENT AND DISTRIBUTION OF THE SURVEY**

A survey was developed using the LimeSurvey tool to collect data on site constraints from various State DOTs to help identify the critical case scenarios observed in different states. The survey was developed to identify critical case scenarios observed in different states to install a short radius system.

Three generic site cases were identified that were further investigated for specific site cases based on the directions of traffic flow. The survey asked the users to first rank the generic cases, followed by ranking the specific case for each of the generic cases. Based on the directions of traffic flow for the primary and secondary roads, there were a total of nine specific site cases for each of the generic site cases. An additional fourth generic site case was included which was an extension of Case 3 to judge how the inclusion of an addition "left only lane" effects the placement of the short radius system.

The details of the survey have been attached in Appendix B1.

2.2 SURVEY RESULTS

The results of the survey were used to identify the critical site cases according to their rankings. LimeSurvey provides statistics based on the total number of responses which gives the percentage of users opting for a particular case as a particular rank. That is, the statistics may read something like "75 percent of the users chose case 2.3 as rank 1, 66 percent of the users chose case 2.4 as rank 2" and so on. Table 3 provides a summary of the survey rankings.

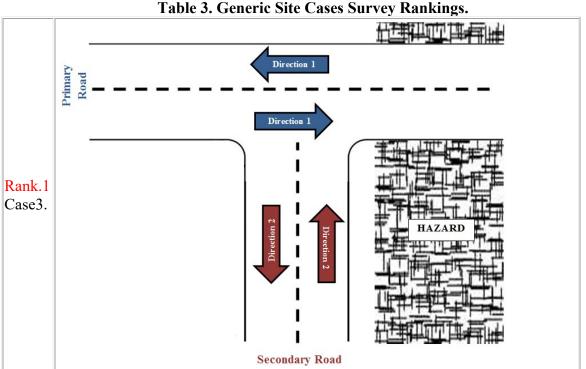


Table 3. Generic Site Cases Survey Rankings.

 Table 3. Generic Site Cases Survey Rankings (Continued).

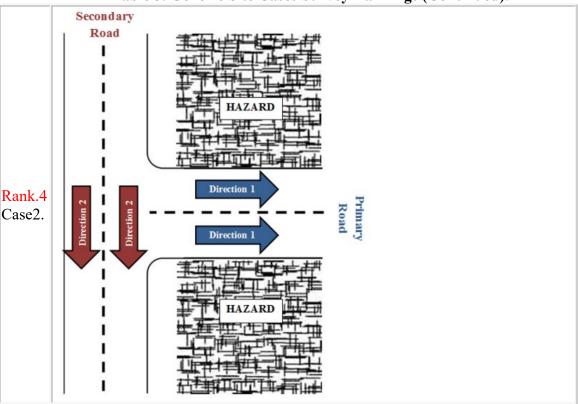


Table 3. Generic Site Cases Survey Rankings (Continued).

The survey recorded a total of 16 complete responses from the various DOTs that were asked to participate. Based on these responses, the top three specific site cases were picked to represent the critical cases for each of the three generic cases. The results of the survey are attached in Appendix B2. Survey participants were also asked to provide specific site cases to identify related site parameters with respect to dimensions of the roadway and short radius guardrail systems currently in place. An example of specific site cases with dimensions is provided in Table 4.

The shaded area in Figure 2 shows the available region to install a short- radius guardrail. The area is predicted based on the potential hazards for a vehicle traveling in the vicinity of the bridge end. In this case, for the primary road, the bridge end itself acts as one of the hazards. Therefore, even though the actual hazard is the water body present, the width of the feasible area is restricted to about 20 ft. in the direction of the primary road. Since there is no notable hazard in the direction of the secondary road, we can assume a width of about 65 ft. for the feasible area based on the length of the existing guardrail.

		Conte	BARRIER	Direction 1		
Site Parameters Identified:						
State	Speed Limit (mph)	D1 (ft)	D2 (ft)	L1 (ft)		
Louisiana	55	20	0	20.22		
Link for Google Maps						

Table 4. Specific Site Case Example.

Figure 2. Specific Site Case Example.

CHAPTER 3. MINIMUM BARRIER LENGTH

3.1 LENGTH OF CRASH CUSHION

One of the main objectives of this project was to provide minimum lengths of crash cushions required for installation. To get a realistic value, all the crash cushions that are presently being used in the industry were studied. A table was prepared listing all the crash cushions and their corresponding lengths for different Test Levels. The distribution of lengths gave a fair estimate of the minimum lengths that were currently being used in practice. To verify the findings, theoretical calculations for minimum lengths were carried out based on MASH criteria for impact speed and accelerations. These results were further discussed with various researchers from several state DOTs to get their insights on the values.

3.2 THEORETICAL CALCULATIONS FOR MINIMUM BARRIER LENGTH

The theoretical calculations to determine the minimum required barrier length were based on MASH criteria for impact speeds and accelerations. The minimum required length of the barrier was based on the total distance traveled by different types of vehicles during the course of an impact with the barrier. Calculations were carried out for three types of vehicles as specified in MASH: Small Car (1100C), Intermediate Car (1500A) and the Pickup Truck (2270P). An Excel spreadsheet was developed which calculates the distances traveled by all three types of vehicles at a specified test level.

For the small car, the length traveled by the vehicle was calculated at two stages (see Figure 3. The first stage was the initial impact stage assuming the occupant impact velocity to be 40 ft/sec as specified in MASH. At this stage, the occupant's head is allowed to travel a maximum of 2 ft. With this data, the acceleration of the car and the distance traveled while the head travels 2 ft can be determined. The final velocity of the car is calculated at the end of this stage which can be used for calculations at the second stage. The second stage of the crash is the ride-down stage where the car is assumed to travel with a constant acceleration of 20 g's before coming to a complete stop. Thus, with the initial velocity calculated at the first stage, the distance traveled by the car at the second stage can be determined. The total distance traveled by the car is the addition of the distances traveled at both stages.

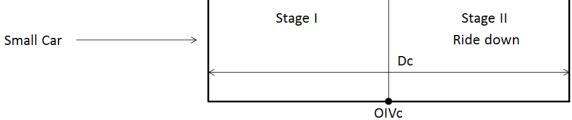


Figure 3. Small Car Theoretical Impact Stages.

For the intermediate car, the calculations were carried out at three main stages. The second stage was further broken into two sub-stages. The first stage assumes that the vehicle travels the same distance as the small car at the stage I. The acceleration depends on the ratio of the masses of the small car to the intermediate car. That means,

$$a = \frac{Mass of small car}{Mass of intermediate car} * ac$$

where, ac = acceleration of small car

With the above data, the distance traveled by the head can be calculated at the first stage. Stage II-a calculates the distance traveled by the car while the head travels the remaining distance of the maximum allowable distance of 2 ft. Stage II-b calculates the remaining distance traveled by the car to match the total distance traveled by the small car at the second stage. Stage III is the ride-down stage where the vehicle is assumed to travel with a constant acceleration of 20 g's until it comes to a complete stop. The total distance traveled by the vehicle is the summation of distances covered at each stage. Figure 4 shows these stages for the car.

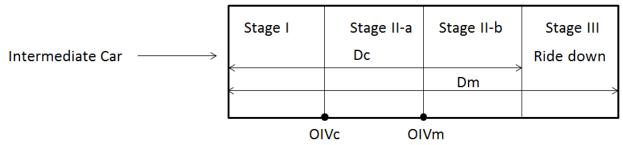


Figure 4. Intermediate Car Theoretical Impact Stages.

Calculations for the pickup truck follow the same procedure as the intermediate car. The calculation is divided into four stages. The third stage is further divided into two sub-stages. The first and second stages calculate the distances traveled by the head while the truck travels the same distance as the small car at stage I and Stage II respectively. The acceleration depends on the ratio of the masses of the small car to the pickup truck. That means,

$$a = \frac{Mass \ of \ small \ car}{Mass \ of \ pickup \ truck} * ac$$

where, ac = acceleration of small car

Stage III-a calculates the additional distance traveled by the truck until the head travels a total distance of 2 ft. Stage III-b calculates the remaining distance traveled by the truck to match the total distance traveled by the intermediate car at the third stage. Stage IV is the ride-down stage where the vehicle is assumed to travel with a constant acceleration of 20 g's until it comes to a complete stop. The total distance traveled by the vehicle is the summation of distances covered at each stage. Figure 5 shows these stages for the pickup truck. Table 5 provides the variables for calculation of the theoretical barrier minim length.

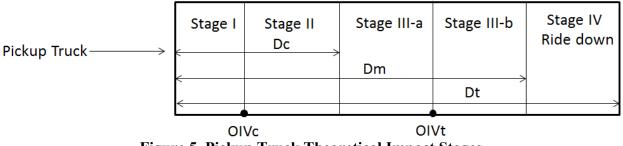


Figure 5. Pickup Truck Theoretical Impact Stages

Table 5. Description of Variables for Theoretical Barrier Minimum Length Calculation.

Designation	Term					
Dc	Distance traveled by small car					
Dm	Distance traveled by intermediate car					
Dt	Distance traveled by pickup truck					
OIVc	Occupant Impact velocity of small car					
OIVm	Occupant Impact velocity of intermediate car					
OIVt	Occupant Impact velocity of pickup truck					

3.3 THEORETICAL BARRIER MINIMUM LENGTH

The theoretical minimum barrier length is the maximum of the lengths calculated for the small car, intermediate car, and the pickup truck. The calculated minimum barrier length is **13.01 ft** for TL-3, **6.88** ft for TL-2, and **3.54** ft for TL-1. The summary of minimum barrier length calculations is shown in Table 6.

3.3 LENGTH OF CRASH CUSHIONS CURRENTLY IN USE

A summary of the length of the crash cushions currently being used is presented in Table 7.

A comparison of the calculated theoretical minimum barrier length and the lengths of existing barriers revealed that the calculated TL-3 barrier length of 13.01 ft. was less than the shortest TL-3 system length of 19.42 ft., and that the calculated minimum TL-2 barrier length of 6.88 ft. was less than the shortest TL-2 system length of 8.5 ft. This shows that all currently developed systems could be used in these site cases, physical space permitting, and be within MASH occupant impact criteria. However, based on the theoretical nature of the minimum length calculation, real world efficiency losses, and insights from researchers representing various DOT's, lengths of 19 ft for TL-3 systems and 8 ft for TL-2 systems were selected as practical estimates for minimum required barrier lengths.

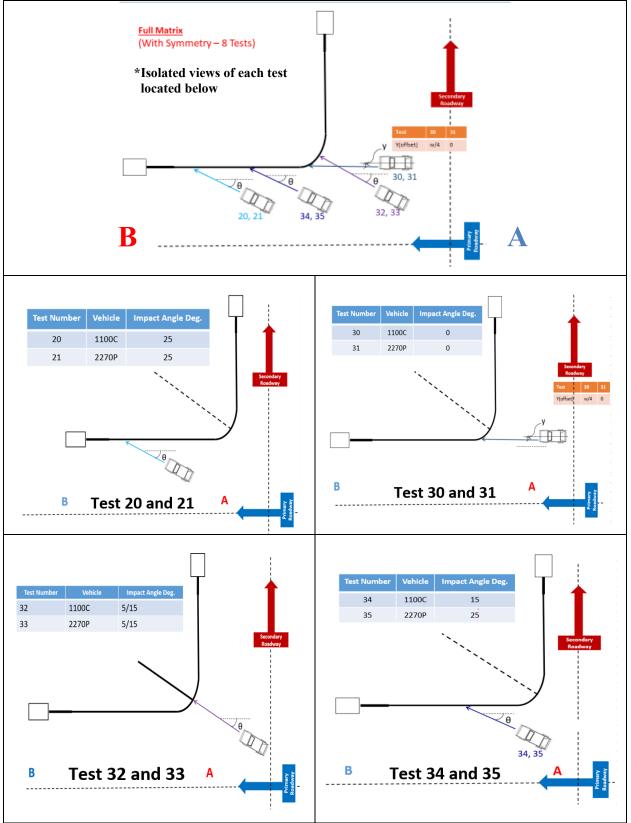
		TL-3	TL-2		0	TL-1	
Vehicle	Stage	Distance traveled (ft.)	OIV (ft./sec)	Distance traveled (ft.)	OIV (ft./sec)	Distance traveled (ft.)	OIV (ft./sec)
	-	7.095	40	4.454	40	2.54	40
Small Car	=	2.017	40	0.468		0.023	
	Total	9.112		4.92		2.57	
	Ι	7.0954	38.06	4.454	38.76	2.54	40
Intownodicto	II-a	1.39		0.941		0.57	
Intermediate Car	II-b	0.626		0		0	
Car	Ш	1.714		0.863		0.428	
	Total	10.826		6.259		3.55	
	Ι	7.095	35.09	4.454	37.27	2.54	38.847
	=	2.017		0.468		0.023	
Pickup Truck	III-a	1.344		1.650		1.20	
	III-b	0.369		0		0	
	IV	2.18		1.09		0.545	
	Total	13.007		7.67		4.31	

Table 6. Summary of Theoretical Barrier Minimum Length Calculations

Barrier Lengths							
Summary Of Length Calculations							
TL - 3		TL - 2					
System	Length (ft)		System		Length (ft)		
REACT 350 (36)	19.42		EASI-Ce	II	8.50		
WIDETRACC	21.00		N-E-A-T System		9.71		
TRACC	21.25		SCT01a-b		12.75		
SCI100GM	21.50		SHORTRACC		14.25		
QUADGUARD CZ SYSTEM	22.11		ABSORE	350	19.33		
QUADGUARD SYSTEM (69 OR 90)	22.12						
QUADGUARD CZ SYSTEM ON A PLATE	22.13		Calcluated Minimum Length (ft)		ength (ft)		
UNIVERSAL TAU-II	24.00		TL - 3	TL - 2	TL - 1		
X-TENUATOR	24.75		13.01	6.88	3.54		
FASTRACC	26.00						
HEART	26.19						
QUADGUARD CEN	26.75						
QUADGUARD HIGH SPEED	29.50						
REACT 350 WIDE	30.58						
QUADGUARD SYSTEM	31.00						
BREAKMASTER 350 SYSTEM (Terminal End Treatment)	31.50						
ABSORB 350	32.00						
QUADGUARD LMC SYSTEM	32.80						
QUADGUARD ELITE SYSTEM	33 <mark>.62</mark>						

Table 7. Comparison of Existing Barrier Lengths and Calculated Theoretical MinimumBarrier Lengths

CHAPTER 4. DEVELOPMENT OF TEST MATRIX


4.1 SPECIFIC SITE CASES

In addition to the survey, participants were requested to provide data of any practical case scenarios that they might have come across in their respective states. The data collected mainly included photographs of the cases showing the associated site constraints and site parameters where short radius guardrail systems were used and were considered to be critical with respect to the site constraints present. The site parameters included details such as the total number of lanes for primary and secondary roads, speed categories for primary and secondary roads, offset distance of the hazard from the face of the road etc.

Photographs and documents representing specific site cases have been attached in Appendix C.

4.2 PROPOSED TEST MATRIX

After reviewing the results of the survey and specific site cases researchers developed a new test matrix made up of the MASH tests deemed critical. The proposed test matrix is comprised of 8 tests, 2 transition section tests (20 and 21) and 6 terminal/crash cushion tests (30-35). As with the original MASH test matrix, the number of tests required to perform is based on the symmetry of the system. Asymmetric systems require testing of the test matrix on both approaches to the system, bringing the total number of tests to 16. Symmetric systems only require testing for one approach. The full test matrix is shown in Table 8.

Table 8. Proposed Full Test Matrix

In addition to the symmetry of the system, the direction of travel of the vehicle determines what tests are critical. For systems that are adjacent to roadways with bidirectional traffic, and unidirectional traffic in the same direction as the system, in the direction from A to B, the full test matrix is required with respect to the symmetry of the system. For systems placed on roadways with unidirectional traffic in the opposite direction of the system, in the direction from B to A, only 2 tests are deemed critical, test 34 and 35. The proposed required testing for roadways with unidirectional traffic in the opposite direction as the system is shown in Figure 6.

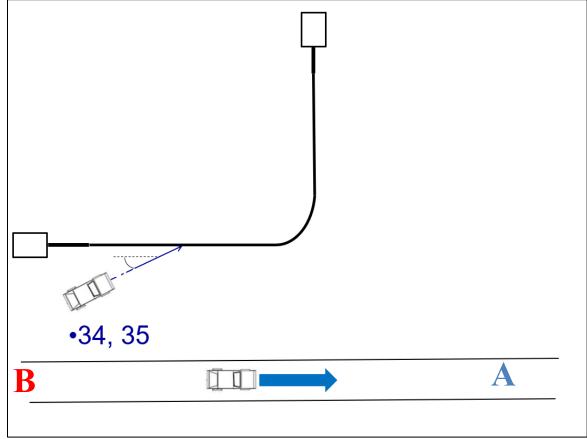


Figure 6. Proposed Test Matrix for Unidirectional Traffic in Opposite Direction as System.

CHAPTER 5. CONCLUSION AND RECOMMENDATIONS

5.1 RECOMMENDED TEST MATRIX

After analyzing specific extreme site constraint cases indicated by state DOTs, researchers developed criteria for evaluating roadside safety devices placed in areas with extreme site constraints. The developed evaluation criteria are based on the symmetry of the system utilized and on the direction of traffic flow adjacent to the system. To help identify which evaluation criteria is recommended for a given system, a flow chart was developed. (Figure 7).

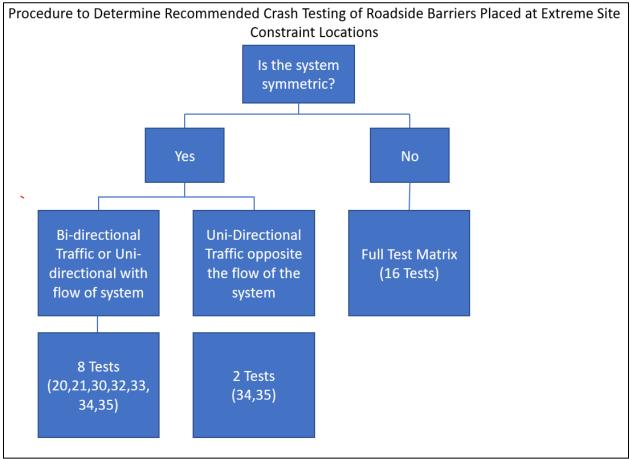


Figure 7. Proposed Flow Chart to Determine Required Testing

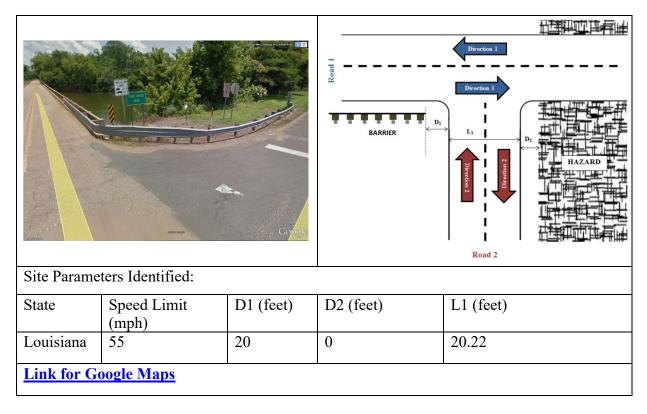
5.2 RECOMMENDED MINIMUM BARRIER LENGTH

Based on the theoretical minimum barrier length calculations, studying the lengths of the crash cushions currently being used, and insights from the researchers representing various DOTs, the lengths in Table 9 were selected as practical estimates for the minimum barrier lengths.

TEST LEVEL	LENGTH (ft)
TL – 3	19
TL – 2	8

Table 9. Recommended Minimum Barrier Lengths.

5.3 RECOMMENDATION FOR FUTUR RESEARCH

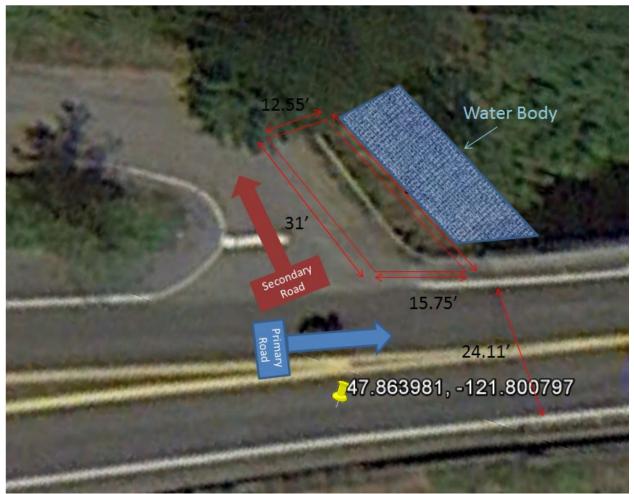

This report presents preliminary views of the research team to develop a template for evaluating a short radius design for an extreme site constraints placement. Further research is needed to refine the template using more representative crash data for encroachment (speed and angle) for such geometric constraints. Additionally, an investigative study is needed to address a realistic implementation process of such template.

REFERENCES

- 1. AASHTO. *Manual for Assessing Roadside Safety Hardware, Second Edition.* American Association of State Highway and Transportation Officials: Washington, DC, 2016.
- 2 FMVSS. Federal Motor Vehicle Safety Standards and Regulations, U. S. Department of Transportation, National Highway Traffic Safety Administration, Washington, DC, March 1999.
- 3. Abu-Odeh A.Y., Kim K.-M., Alberson D.C., *Evaluation of Existing T-Intersection Guardrail Systems for Equivalency with NCHRP Report 350 TL-2 Test Conditions*, Texas Transportation Institute, Project No. 405160-10, College Station, Texas, August 2010.
- 4. AASHTO, *1989 Guide Specification for Bridge Railings*, American Association of State Highway and Transportation Officials, Washington D.C., 1989.
- 5. Michie J.D., *Recommended Procedures for the Safety Performance Evaluation of Highway Appurtenances*, NCHRP 230, Transportation Research Board, Washington D.C., March 1981.
- 6. Ross, H. E., Sicking, D. L., et al., *Recommended Procedures for the Safety Performance Evaluation of Highway Features*, NCHRP Report 350, Washington D.C., 1993.
- 7. Silvestri Dobrovolny, C., Brackin M.S., and Betancourt, P., *Best Practices for Barrier Protection of Bridge Ends*, Pooled Fund Project, Washington State Department of Transportation, Report No. 405160-38, Texas A&M Transportation Institute, 2013.
- 8. Abu-Odeh, A.Y., McCaskey, K.M., Bligh, R.P., Menges, W.L., and Kuhn, D. L. Crash Test and MASH TL-3 Evaluation of the TxDOT Short Radius Guardrail, Report No. 0-6711-1, Texas A&M Transportation Institute, College Station, TX, March 2015.

APPENDIX A. SPECIFIC SITE CASES – FEASIBLE AREA FOR SHORT RADIUS GUARDRAIL

SITE CASE - 1



The shaded area shows the Available region to install a short- radius guardrail. The area is predicted based on the potential hazards for a vehicle traveling in the vicinity of the bridge end. In this case, for the primary road, the bridge end itself acts as one of the hazards. Therefore, even though the actual hazard is the water body present, the width of the feasible area is restricted to about 20 ft. in the direction of the primary road. Since there is no notable hazard in the direction of the secondary road, we can assume a width of about 65 ft. for the feasible area based on the length of the existing guardrail.

SITE CASE - 2

State Speed Limit D1 (feet)		D D D D	Direction 1			
State	Speed Limit (mph)	D1 (feet)	D2 (feet)	L1 (feet)		
Washingto	35	2.5	15.75	24.11		
n						
Link for Google Maps						

The marked area in the above figure shows the feasible region to install a short- radius guardrail. The area is predicted based on the potential hazards for a vehicle traveling in the vicinity of the bridge end. In this case, both the bridge end and the water body are potential hazards for vehicles traveling on the primary road. This restricts the width of the feasible area in the direction of the primary road to about 16 ft. For vehicle traveling in the direction of the secondary road, the terrain on the right side of the road restricts the width of the feasible area to about 31 ft. from the end of the road.

APPENDIX B. THE SURVEY

2.1 SCOPE OF THE SURVEY

Texas A&M Transportation Institute (TTI) is conducting a study for the Roadside Safety Research Program Pooled Fund Study entitled "Feasibility study for addressing extreme site constraints at bridge ends".

As first step of this study, a survey was designed with the intent to gain information regarding generic site cases and their rank with respect to frequency of occurrence, according to DOTs experience.

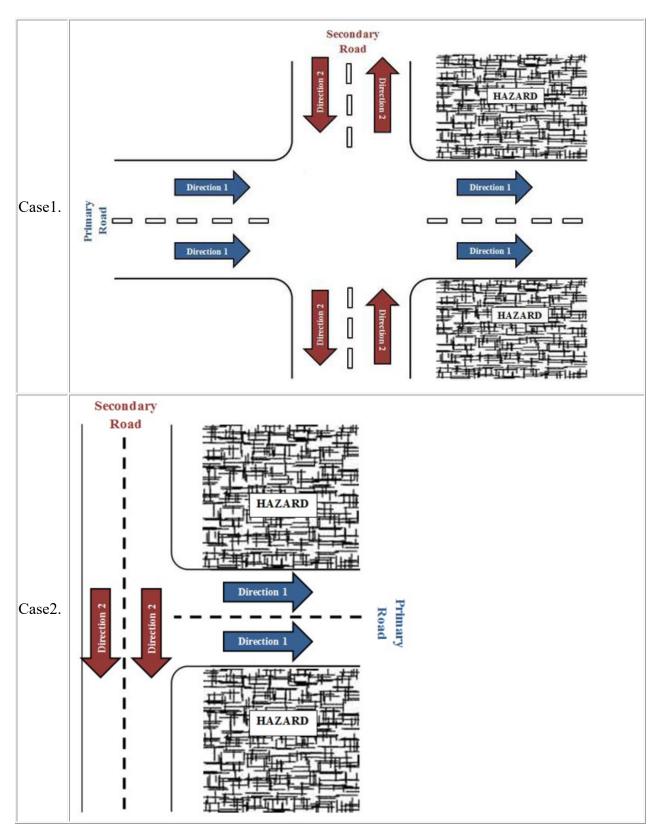
The results of this survey will be used to develop a categorization methodology for determining proper impact conditions and evaluation criteria for future design concepts.

Your participation in the survey is very important to have your DOT's needs accurately represented in this study.

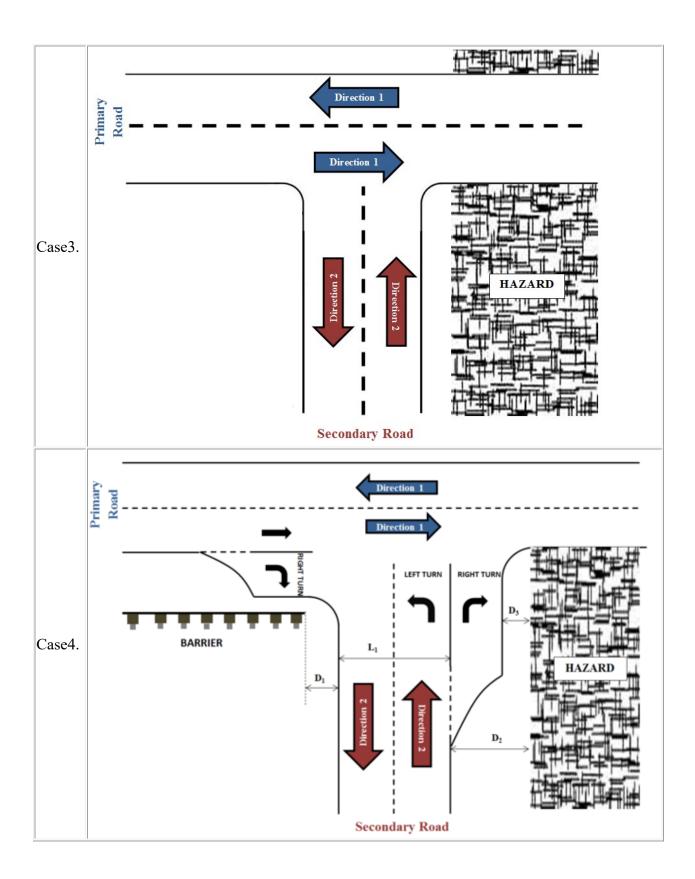
Thank you very much in advance for your time and dedication in helping with this research effort.

Contact Information

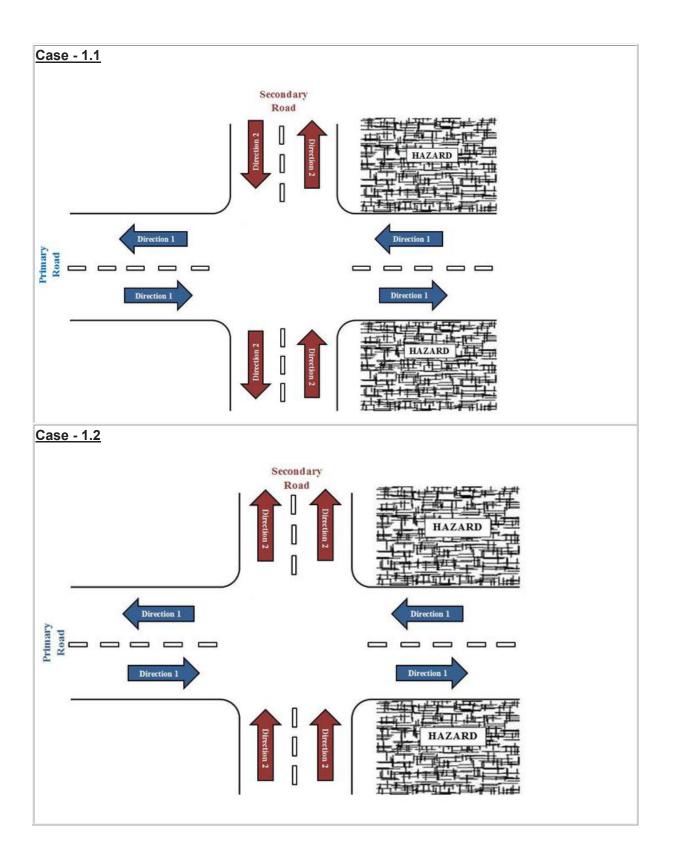
F	Please enter	your contact	information:
•	Name:		
•	Title:		
•	Agency:		_

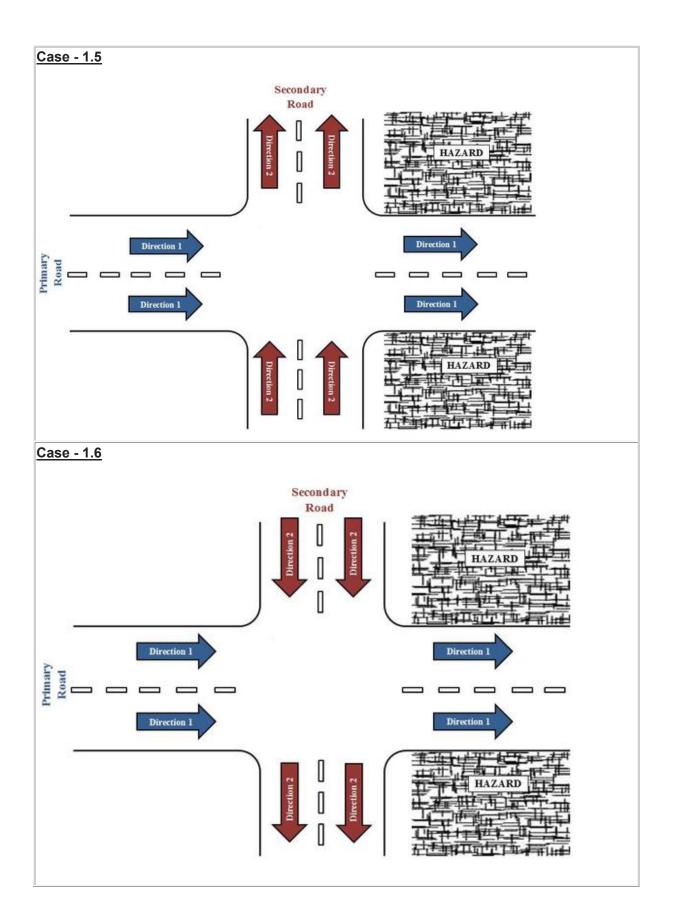

. . .

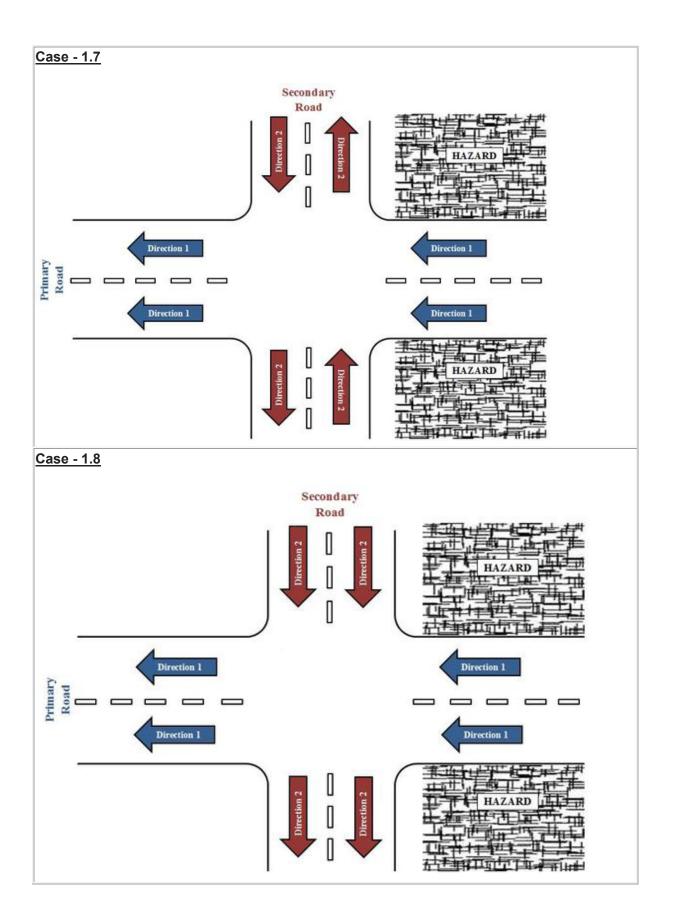
- Address: •
- City/Town: •
- State: •
- ZIP: •
- Email Address: •
- Phone Number: •

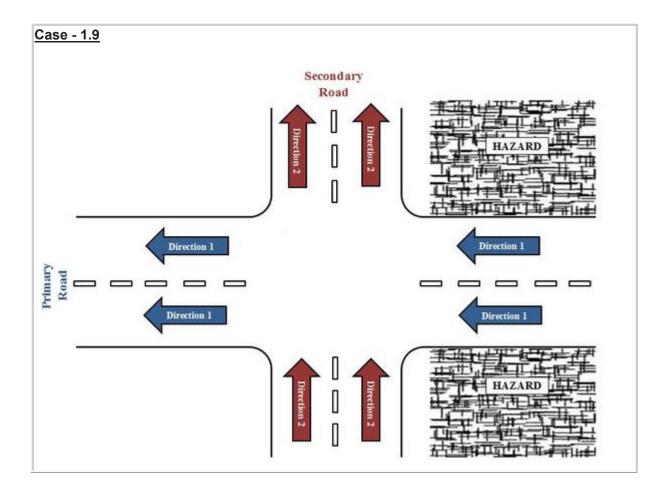

May we contact you for more information?

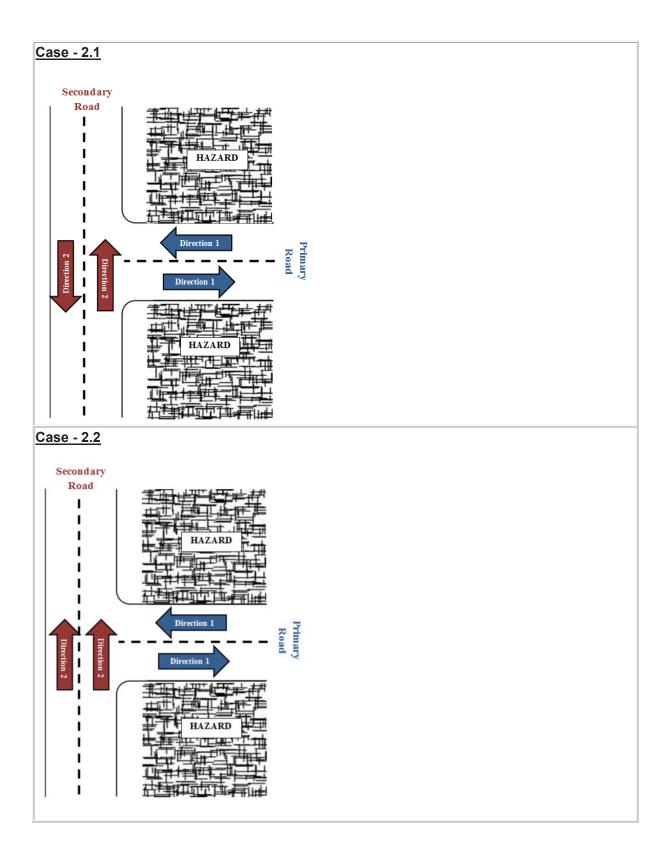
- $^{\circ}$ Yes
- O. No

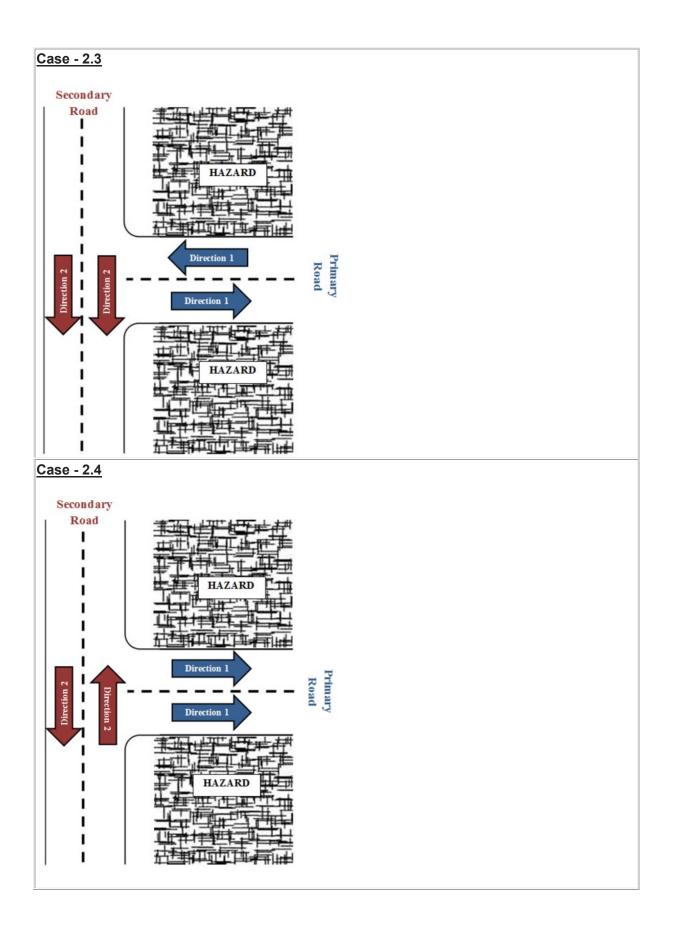

Please Contact:

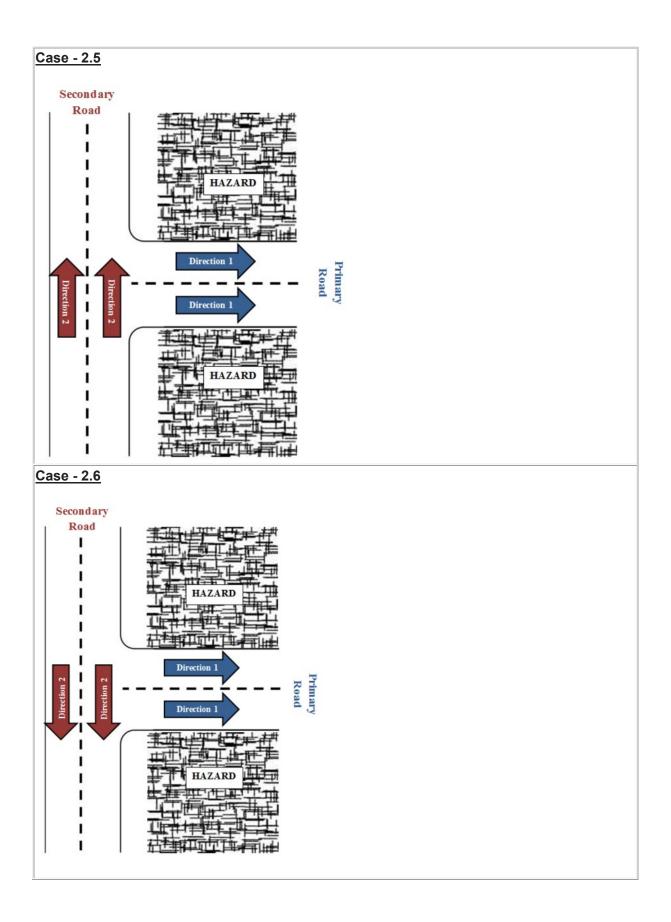

Please rank the following generic site cases according to their frequency of occurrence:

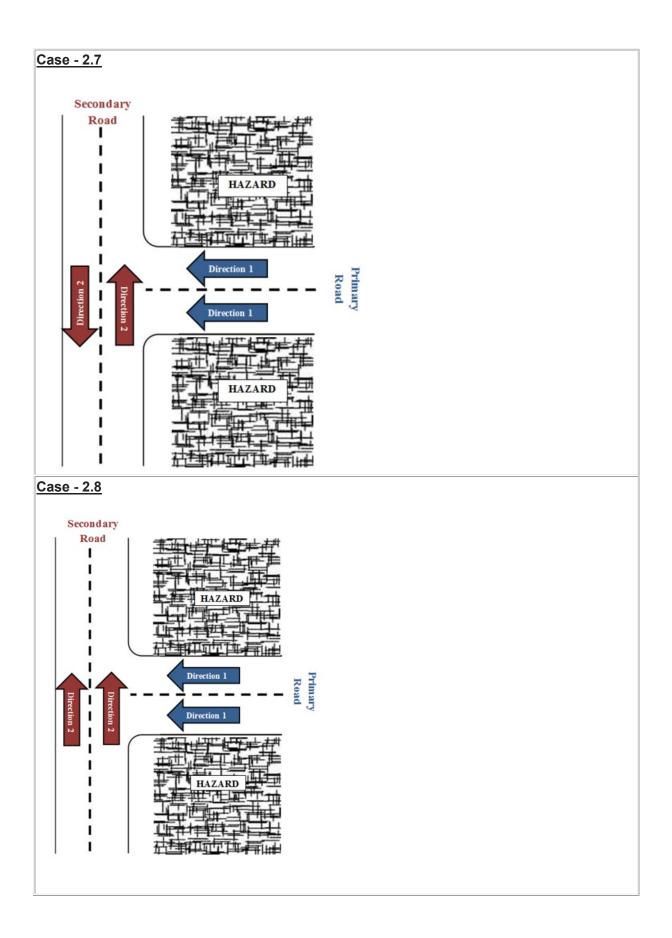


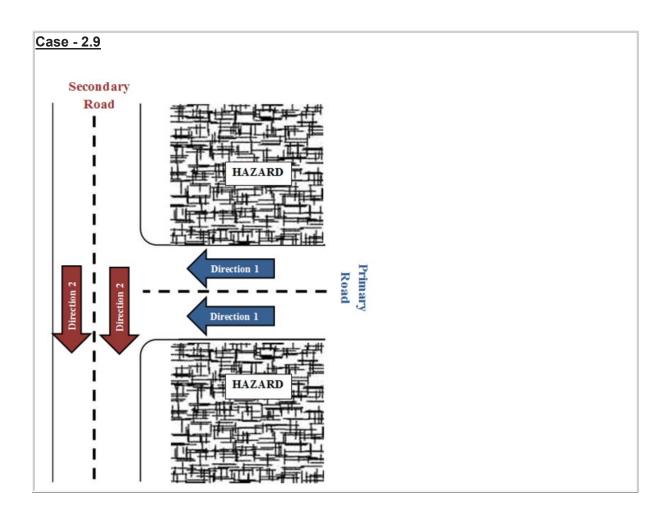

Please rank the following specific site cases according to their frequency of occurrence:

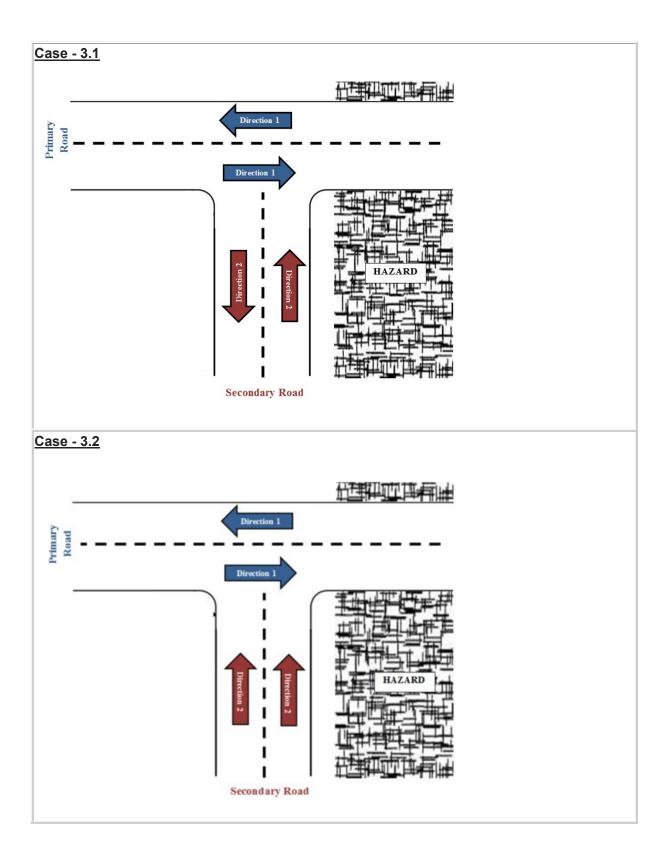


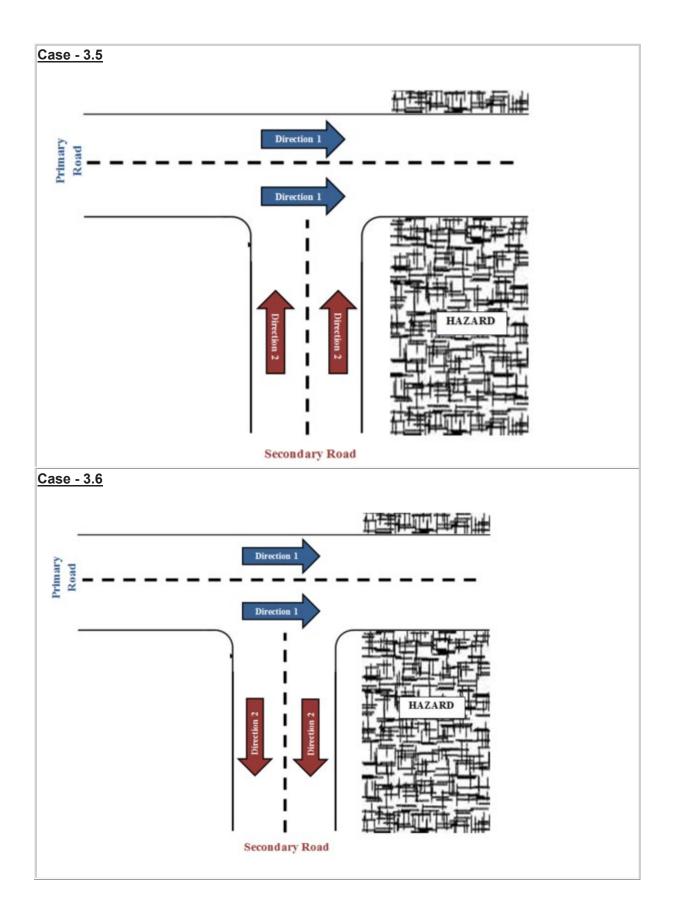


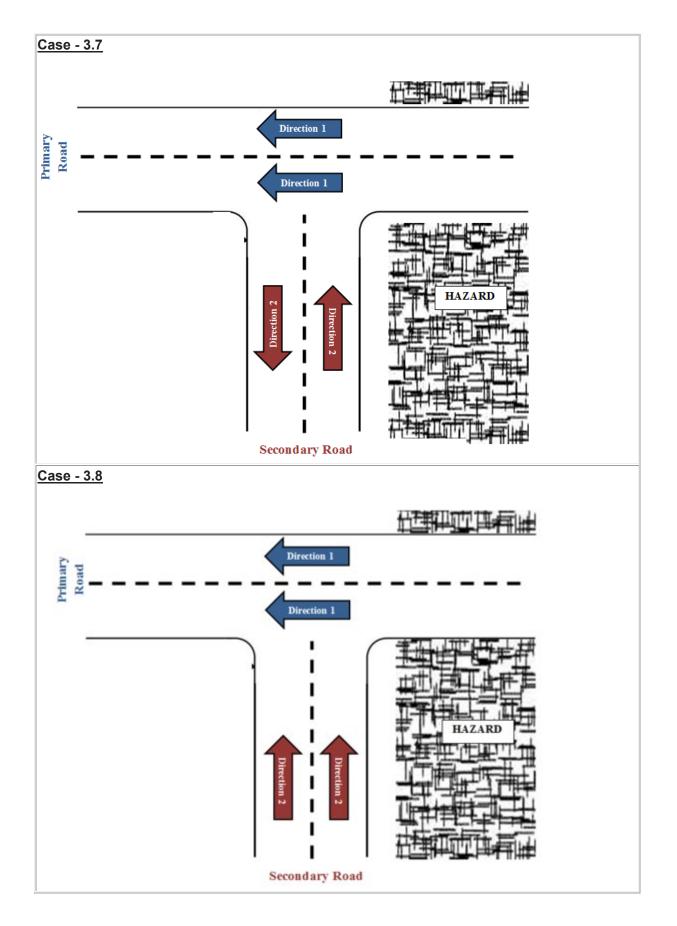


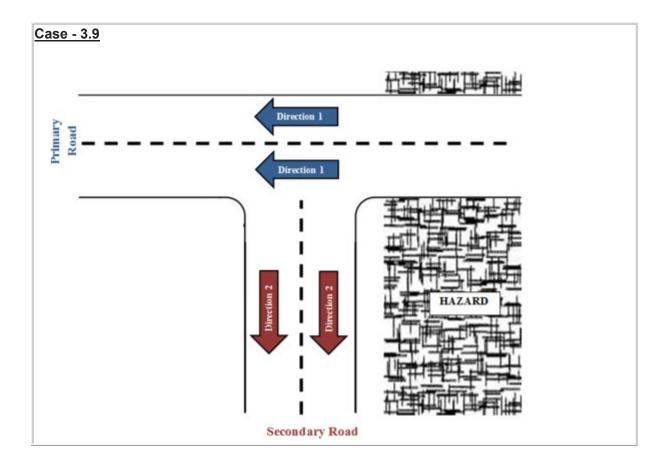


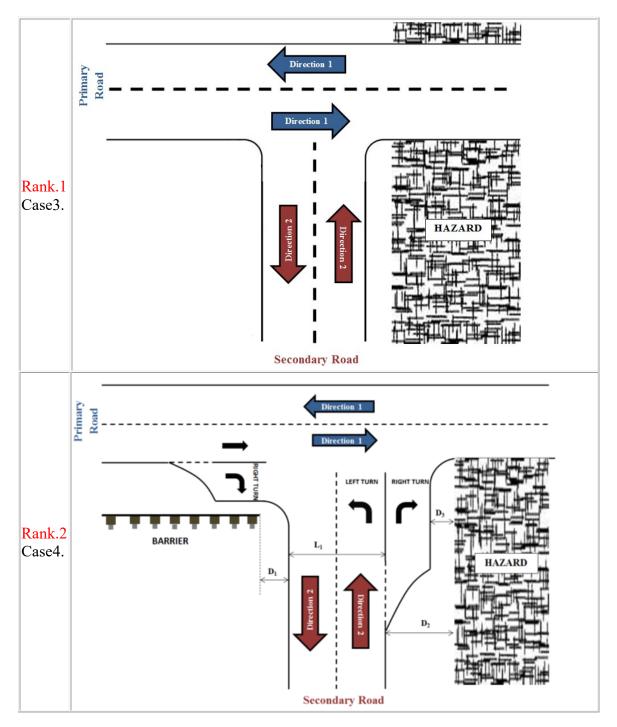

Please rank the following specific site cases according to their frequency of occurrence:



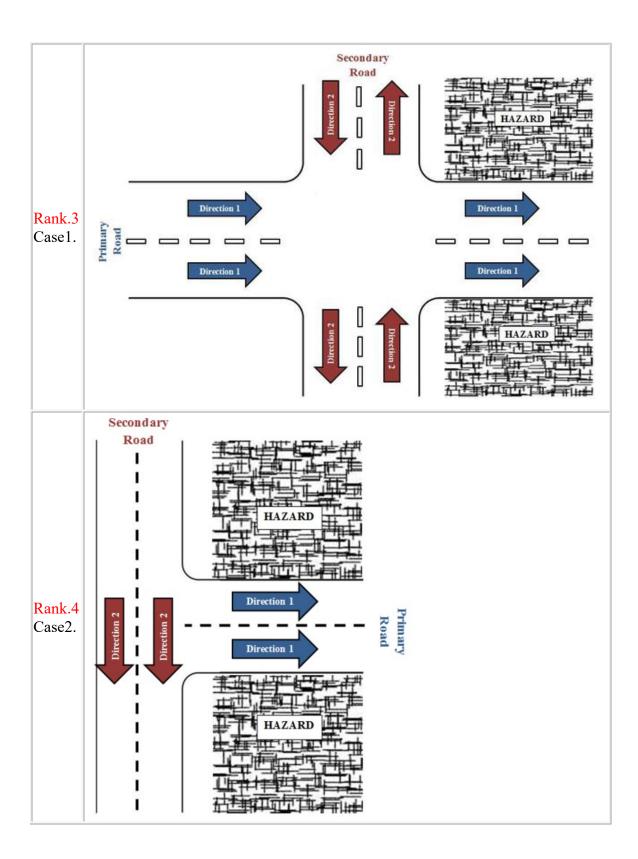





Please rank the following specific site cases according to their frequency of occurrence:

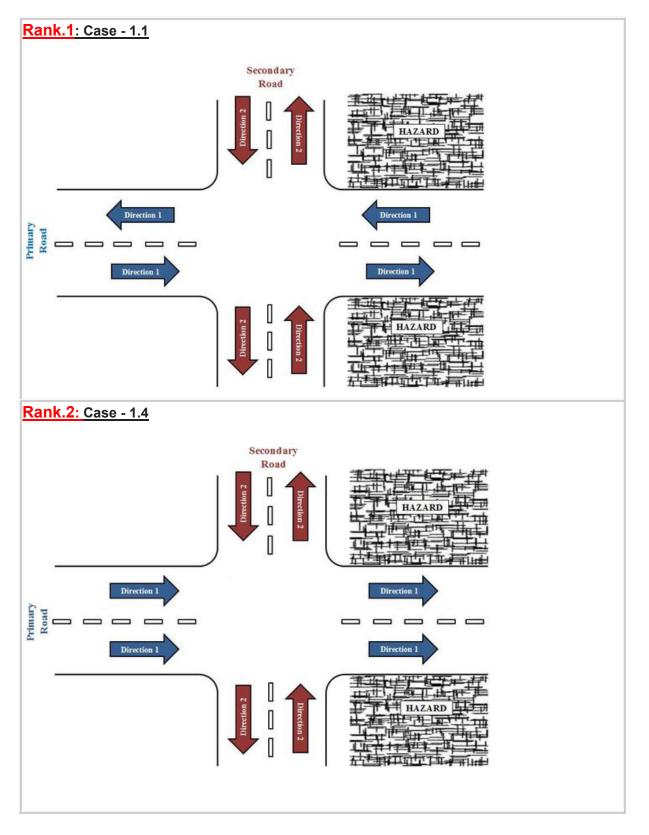

If you would like to provide us with any further details or investigate any additional case, please email us at:

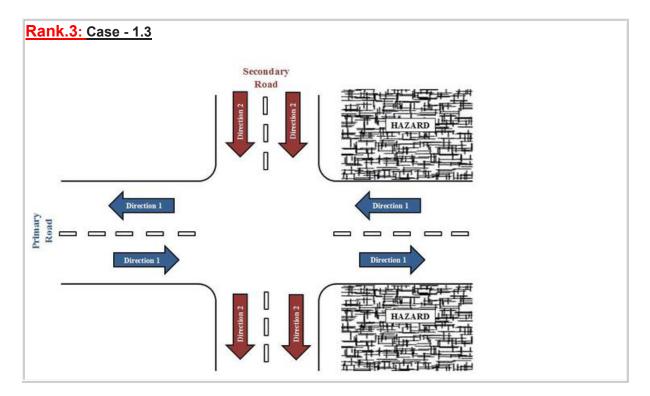
d-arrington@tti.tamu.edu

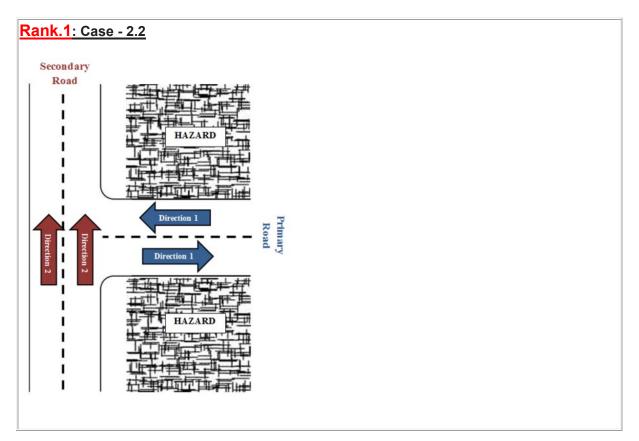

c-silvestri@ttimail.tamu.edu

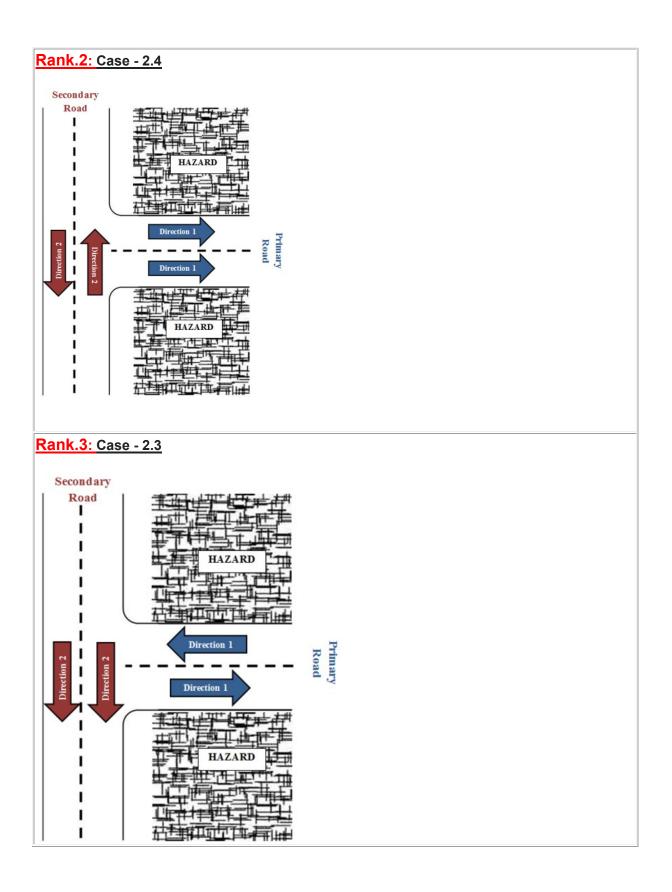
r-rao@tti.tamu.edu

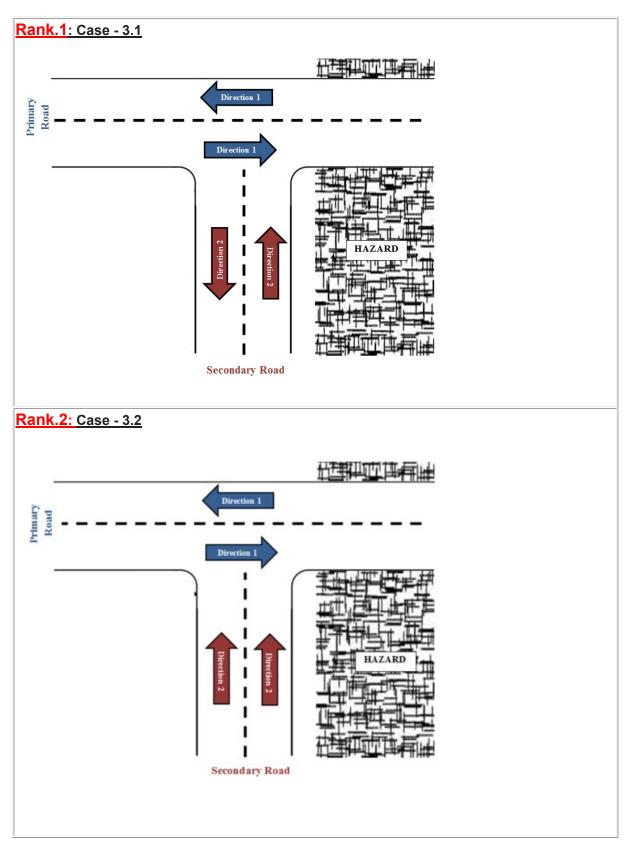
2.2 RESULTS FROM THE SURVEY

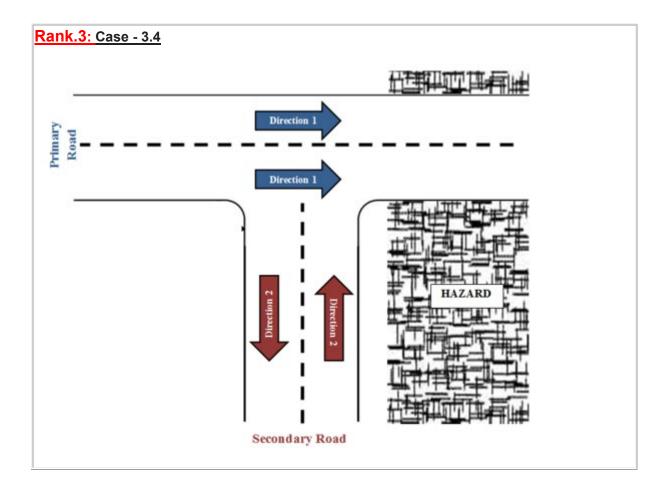


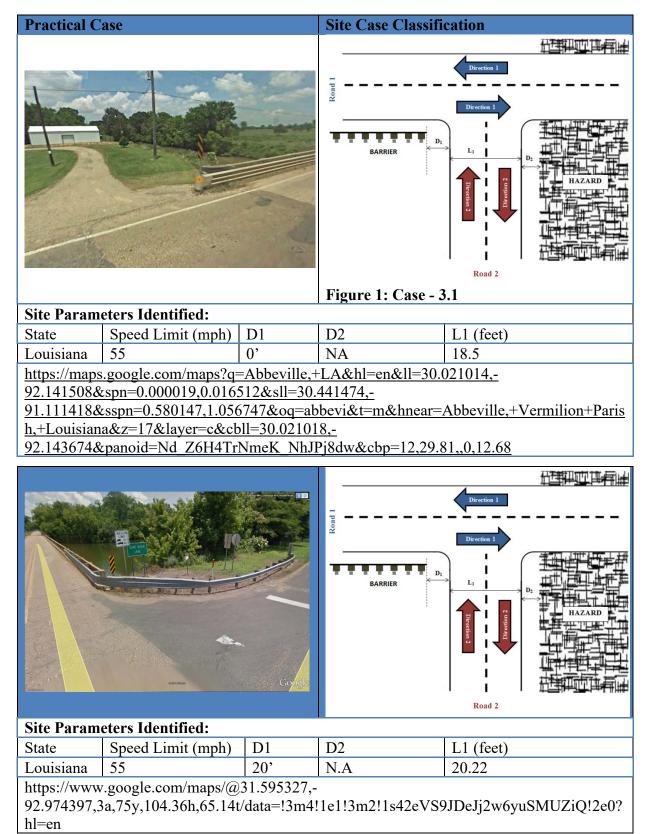

1. GENERIC CASES:

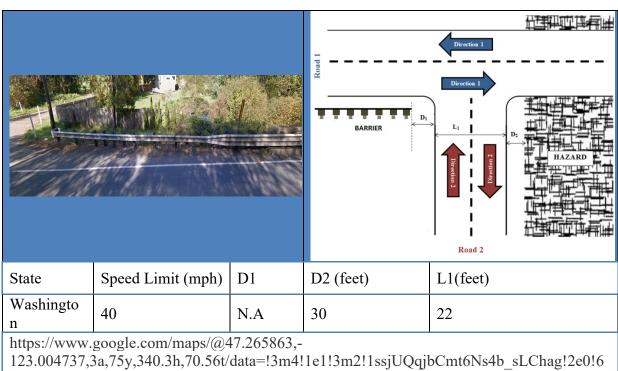

2. SPECIFIC SITE CASES:

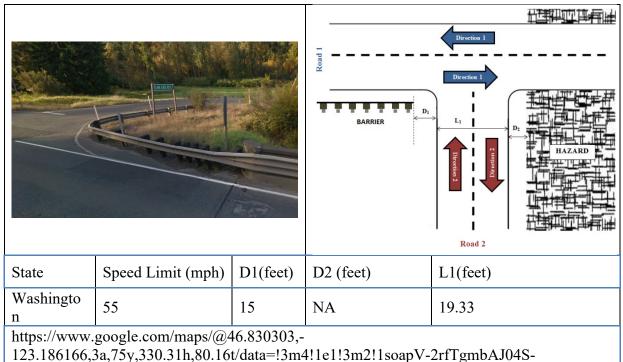




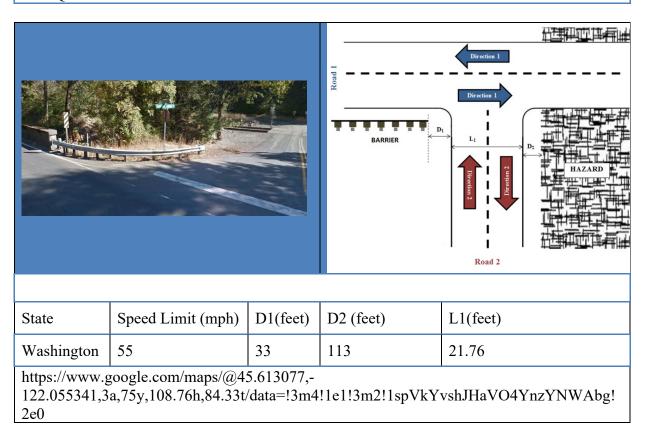

II. CASE – 2

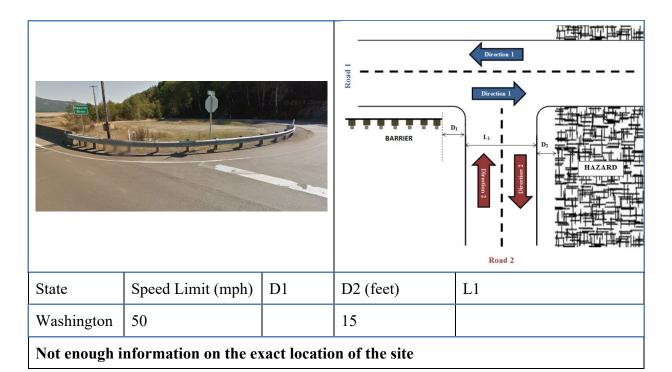


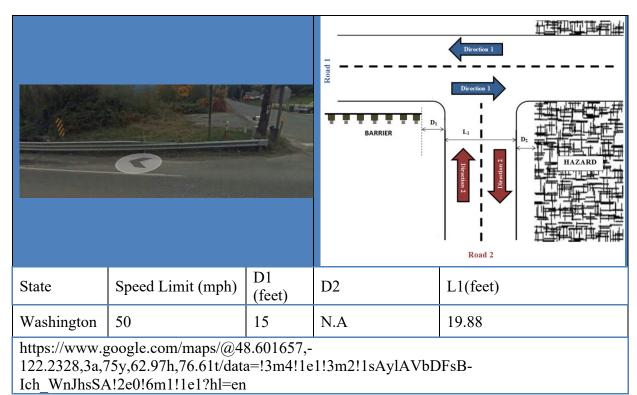


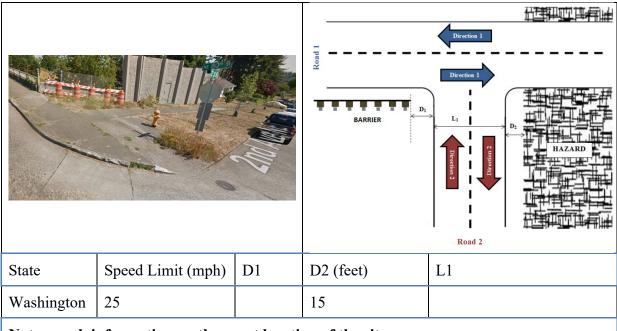


APPENDIX C. SPECIFIC SITE CASES




			BARRIER	Direction 1
State	Speed Limit (mph)	D1	D2 (feet)	L1 (feet)
Washingto n	35	N.A	10	21.61
	.google.com/maps/@4 3a,75y,296.46h,59.54			ht9SjrOSXHtGy2u95_w!2e0?





XLVQ!2e0!6m1!1e1?hl=en

Not enough information on the exact location of the site

